The search session has expired. Please query the service again.

Displaying 801 – 820 of 3997

Showing per page

Direct sums of semi-projective modules

Derya Keskin Tütüncü, Berke Kaleboğaz, Patrick F. Smith (2012)

Colloquium Mathematicae

We investigate when the direct sum of semi-projective modules is semi-projective. It is proved that if R is a right Ore domain with right quotient division ring Q ≠ R and X is a free right R-module then the right R-module Q ⊕ X is semi-projective if and only if there does not exist an R-epimorphism from X to Q.

Directing components for quasitilted algebras

Flávio Coelho (1999)

Colloquium Mathematicae

We show here that a directing component of the Auslander-Reiten quiver of a quasitilted algebra is either postprojective or preinjective or a connecting component.

Directoids with an antitone involution

Ivan Chajda, Miroslav Kolařík (2007)

Commentationes Mathematicae Universitatis Carolinae

We investigate -directoids which are bounded and equipped by a unary operation which is an antitone involution. Hence, a new operation can be introduced via De Morgan laws. Basic properties of these algebras are established. On every such an algebra a ring-like structure can be derived whose axioms are similar to that of a generalized boolean quasiring. We introduce a concept of symmetrical difference and prove its basic properties. Finally, we study conditions of direct decomposability of directoids...

Distinguishing derived equivalence classes using the second Hochschild cohomology group

Deena Al-Kadi (2010)

Colloquium Mathematicae

We study the second Hochschild cohomology group of the preprojective algebra of type D₄ over an algebraically closed field K of characteristic 2. We also calculate the second Hochschild cohomology group of a non-standard algebra which arises as a socle deformation of this preprojective algebra and so show that the two algebras are not derived equivalent. This answers a question raised by Holm and Skowroński.

Distributive lattices of t-k-Archimedean semirings

Tapas Kumar Mondal (2011)

Discussiones Mathematicae - General Algebra and Applications

A semiring S in 𝕊𝕃⁺ is a t-k-Archimedean semiring if for all a,b ∈ S, b ∈ √(Sa) ∩ √(aS). Here we introduce the t-k-Archimedean semirings and characterize the semirings which are distributive lattice (chain) of t-k-Archimedean semirings. A semiring S is a distributive lattice of t-k-Archimedean semirings if and only if √B is a k-ideal, and S is a chain of t-k-Archimedean semirings if and only if √B is a completely prime k-ideal, for every k-bi-ideal B of S.

Division dans l'anneau des séries formelles à croissance contrôlée. Applications

Augustin Mouze (2001)

Studia Mathematica

We consider subrings A of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove a Weierstrass-Hironaka division theorem for such subrings. Moreover, given an ideal ℐ of A and a series f in A we prove the existence in A of a unique remainder r modulo ℐ. As a consequence, we get a new proof of the noetherianity of A.

Currently displaying 801 – 820 of 3997