The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 7 of 7

Showing per page

Certain additive decompositions in a noncommutative ring

Huanyin Chen, Marjan Sheibani, Rahman Bahmani (2022)

Czechoslovak Mathematical Journal

We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a 2 × 2 matrix A over a projective-free ring R is strongly J -clean if and only if A J ( M 2 ( R ) ) , or I 2 - A J ( M 2 ( R ) ) , or A is similar to 0 λ 1 μ , where λ J ( R ) , μ 1 + J ( R ) , and the equation x 2 - x μ - λ = 0 has a root in J ( R ) and a root in 1 + J ( R ) . We further prove that f ( x ) R [ [ x ] ] is strongly J -clean if f ( 0 ) R be optimally J -clean.

Certain decompositions of matrices over Abelian rings

Nahid Ashrafi, Marjan Sheibani, Huanyin Chen (2017)

Czechoslovak Mathematical Journal

A ring R is (weakly) nil clean provided that every element in R is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let R be abelian, and let n . We prove that M n ( R ) is nil clean if and only if R / J ( R ) is Boolean and M n ( J ( R ) ) is nil. Furthermore, we prove that R is weakly nil clean if and only if R is periodic; R / J ( R ) is 3 , B or 3 B where B is a Boolean ring, and that M n ( R ) is weakly nil clean if and only if M n ( R ) is nil clean for all n 2 .

Clean matrices over commutative rings

Huanyin Chen (2009)

Czechoslovak Mathematical Journal

A matrix A M n ( R ) is e -clean provided there exists an idempotent E M n ( R ) such that A - E GL n ( R ) and det E = e . We get a general criterion of e -cleanness for the matrix [ [ a 1 , a 2 , , a n + 1 ] ] . Under the n -stable range condition, it is shown that [ [ a 1 , a 2 , , a n + 1 ] ] is 0 -clean iff ( a 1 , a 2 , , a n + 1 ) = 1 . As an application, we prove that the 0 -cleanness and unit-regularity for such n × n matrix over a Dedekind domain coincide for all n 3 . The analogous for ( s , 2 ) property is also obtained.

Currently displaying 1 – 7 of 7

Page 1