The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We create a framework for odd Khovanov homology in the spirit of Bar-Natan's construction for the ordinary Khovanov homology. Namely, we express the cube of resolutions of a link diagram as a diagram in a certain 2-category of chronological cobordisms and show that it is 2-commutative: the composition of 2-morphisms along any 3-dimensional subcube is trivial. This allows us to create a chain complex whose homotopy type modulo certain relations is a link invariant. Both the original and the odd Khovanov...
We describe two constructions of a certain -grading on the so-called Brown algebra (a simple structurable algebra of dimension and skew-dimension ) over an algebraically closed field of characteristic different from . The Weyl group of this grading is computed. We also show how this grading gives rise to several interesting fine gradings on exceptional simple Lie algebras of types , and .
We show that a Poisson Lie group (G,π) is coboundary if and only if the natural action of G×G on M=G is a Poisson action for an appropriate Poisson structure on M (the structure turns out to be the well known ). We analyze the same condition in the context of Hopf algebras. A quantum analogue of the structure on SU(N) is described in terms of generators and relations as an example.
We construct a special class of fermionic Novikov superalgebras from linear functions. We show that they are Novikov superalgebras. Then we give a complete classification of them, among which there are some non-associative examples. This method leads to several new examples which have not been described in the literature.
La presente Nota contiene una lista di -algebre reali di dimensione finita ed una lista di -algebre complesse di dimensione finita tali che: 1) due elementi distinti di ogni lista non sono mai -isomorfi; 2) ogni -algebra di dimensione finita reale (complessa) è —isomorfa su (su ) alla somma diretta, finita, di -algebre reali (complesse) elencate nella lista. In altre parole, diamo qui una classificazione completa delle —algebre reali e delle -algebre complesse di dimensione finita. Nel...
We study a twisted generalization of Lie superalgebras, called Hom-Lie superalgebras. It is obtained by twisting the graded Jacobi identity by an even linear map. We give a complete classification of the complex multiplicative Hom-Lie superalgebras of low dimensions.
Let G be a complex reductive connected algebraic group equipped with the Sklyanin bracket. A classification of Poisson homogeneous G-spaces with connected isotropy subgroups is given. This result is based on Drinfeld's correspondence between Poisson homogeneous G-spaces and Lagrangian subalgebras in the double D𝖌 (here 𝖌 = Lie G). A geometric interpretation of some Poisson homogeneous G-spaces is also proposed.
We describe a cluster algebra algorithm for calculating -characters of Kirillov–Reshetikhin modules for any untwisted quantum affine algebra . This yields a geometric -character formula for tensor products of Kirillov–Reshetikhin modules. When is of type , this formula extends Nakajima’s formula for -characters of standard modules in terms of homology of graded quiver varieties.
Currently displaying 1 –
20 of
228