Displaying 1721 – 1740 of 2676

Showing per page

Subalgebras of finite codimension in symplectic Lie algebra

Mohammed Benalili, Abdelkader Boucherif (1999)

Archivum Mathematicum

Subalgebras of germs of vector fields leaving 0 fixed in R 2 n , of finite codimension in symplectic Lie algebra contain the ideal of germs infinitely flat at 0 . We give an application.

Subloops of sedenions

Benard M. Kivunge, Jonathan D. H Smith (2004)

Commentationes Mathematicae Universitatis Carolinae

This note investigates sedenion multiplication from the standpoint of loop theory. New two-sided loops are obtained within the version of the sedenions introduced by the second author. Conditions are given for the satisfaction of standard loop-theoretical identities within these loops.

Super boson-fermion correspondence

Victor G. Kac, J. W. Van de Leur (1987)

Annales de l'institut Fourier

We establish a super boson-fermion correspondence, generalizing the classical boson-fermion correspondence in 2-dimensional quantum field theory. A new feature of the theory is the essential non-commutativity of bosonic fields. The superbosonic fields obtained by the super bosonization procedure from super fermionic fields form the affine superalgebra g ˜ l 1 | 1 . The converse, super fermionization procedure, requires introduction of the super vertex operators. As applications, we give vertex operator constructions...

Supporting sequences of pure states on JB algebras

Jan Hamhalter (1999)

Studia Mathematica

We show that any sequence ( φ n ) of mutually orthogonal pure states on a JB algebra A such that ( φ n ) forms an almost discrete sequence in the relative topology induced by the primitive ideal space of A admits a sequence ( a n ) consisting of positive, norm one, elements of A with pairwise orthogonal supports which is supporting for ( φ n ) in the sense of φ n ( a n ) = 1 for all n. Moreover, if A is separable then ( a n ) can be taken such that ( φ n ) is uniquely determined by the biorthogonality condition φ n ( a n ) = 1 . Consequences of this result improving...

Sur certaines algèbres de Lie de dérivations

Yves Félix, Stephen Halperin, Jean-Claude Thomas (1982)

Annales de l'institut Fourier

Il est démontré que toute a.d.g.c. ayant un modèle minimal de Sullivan de type fini peut être représentée par une certaine algèbre de Lie différentielle graduée de dérivations. En particulier on peut ainsi représenter le type d’homotopie rationnelle d’un espace topologique.

Sur la catégorie de Lusternik-Schnirelmann des algèbres de cochaînes

Bitjong Ndombol (1991)

Annales de l'institut Fourier

Nous introduisons une nouvelle définition d’un invariant bi M cat pour une algèbre de cochaînes A connexe et 1-connexe, de type fini sur un corps k de caractéristique quelconque, et nous montrons d’une part, qu’il coïncide avec l’invariant 𝒜 cat introduit par S. Halperin et J.-M. Lemaire et d’autre part, qu’il est invariant par extension de corps et qu’il vérifie la conjecture de Ganéa.

Currently displaying 1721 – 1740 of 2676