The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 761 –
780 of
3021
We recall the definition of strong homotopy derivations of algebras and introduce the corresponding definition for algebras. We define strong homotopy inner derivations for both algebras and exhibit explicit examples of both.
This paper aims to construct a full strongly exceptional collection of line bundles in the derived category D b(X), where X is the blow up of ℙn−r ×ℙr along a multilinear subspace ℙn−r−1×ℙr−1 of codimension 2 of ℙn−r ×ℙr. As a main tool we use the splitting of the Frobenius direct image of line bundles on toric varieties.
Let Λ be an artin algebra. We prove that for each sequence of non-negative integers there are only a finite number of isomorphism classes of indecomposables , the bounded derived category of Λ, with for all i ∈ ℤ and E(X) the endomorphism ring of X in if and only if , the bounded derived category of the category of all left Λ-modules, has no generic objects in the sense of [4].
We complete the derived equivalence classification of all weakly symmetric algebras of domestic type over an algebraically closed field, by solving the problem of distinguishing standard and nonstandard algebras up to stable equivalence, and hence derived equivalence. As a consequence, a complete stable equivalence classification of weakly symmetric algebras of domestic type is obtained.
We study finiteness properties, especially the noetherian property, the Krull dimension and a variation of finite presentation, in categories of polynomial functors (notion introduced by Djament and Vespa) from a small symmetric monoidal category whose unit is an initial object to an abelian category. We prove in particular that the category of polynomial functors from the category of free abelian groups ℤⁿ with split monomorphisms to abelian groups is "almost" locally noetherian. We also give an...
Currently displaying 761 –
780 of
3021