Displaying 181 – 200 of 220

Showing per page

Distributive implication groupoids

Ivan Chajda, Radomir Halaš (2007)

Open Mathematics

We introduce a concept of implication groupoid which is an essential generalization of the implication reduct of intuitionistic logic, i.e. a Hilbert algebra. We prove several connections among ideals, deductive systems and congruence kernels which even coincide whenever our implication groupoid is distributive.

Diversity in inside factorial monoids

Ulrich Krause, Jack Maney, Vadim Ponomarenko (2012)

Czechoslovak Mathematical Journal

In a recent paper (Diversity in Monoids, Czech. Math. J. 62 (2012), 795–809), the last two authors introduced and developed the monoid invariant “diversity” and related properties “homogeneity” and “strong homogeneity”. We investigate these properties within the context of inside factorial monoids, in which the diversity of an element counts the number of its different almost primary components. Inside factorial monoids are characterized via diversity and strong homogeneity. A new invariant complementary...

Diversity in monoids

Jack Maney, Vadim Ponomarenko (2012)

Czechoslovak Mathematical Journal

Let M be a (commutative cancellative) monoid. A nonunit element q M is called almost primary if for all a , b M , q a b implies that there exists k such that q a k or q b k . We introduce a new monoid invariant, diversity, which generalizes this almost primary property. This invariant is developed and contextualized with other monoid invariants. It naturally leads to two additional properties (homogeneity and strong homogeneity) that measure how far an almost primary element is from being primary. Finally, as an application...

Divisibility in certain automorphism groups

Ramiro H. Lafuente-Rodríguez (2007)

Czechoslovak Mathematical Journal

We study solvability of equations of the form x n = g in the groups of order automorphisms of archimedean-complete totally ordered groups of rank 2. We determine exactly which automorphisms of the unique abelian such group have square roots, and we describe all automorphisms of the general ones.

Do finite Bruck loops behave like groups?

B. Baumeister (2012)

Commentationes Mathematicae Universitatis Carolinae

This note contains Sylow's theorem, Lagrange's theorem and Hall's theorem for finite Bruck loops. Moreover, we explore the subloop structure of finite Bruck loops.

Currently displaying 181 – 200 of 220