Doubly Primitive Vertex Stabilisers in Graphs.
Let be a -adic field. Let be the group of -rational points of a connected reductive group defined over , and let be its Lie algebra. Under certain hypotheses on and , wequantifythe tempered dual of via the Plancherel formula on , using some character expansions. This involves matching spectral decomposition factors of the Plancherel formulas on and . As a consequence, we prove that any tempered representation contains a good minimal -type; we extend this result to irreducible...
We classify the homogeneous nilpotent orbits in certain Lie color algebras and specialize the results to the setting of a real reductive dual pair. For any member of a dual pair, we prove the bijectivity of the two Kostant-Sekiguchi maps by straightforward argument. For a dual pair we determine the correspondence of the real orbits, the correspondence of the complex orbits and explain how these two relations behave under the Kostant-Sekiguchi maps. In particular we prove that for a dual pair in...
Let G be a non-periodic locally solvable group. A characterization is given of the subgroups-D of G for which the map , for all , defines a lattice-endomorphism.
We consider representations of the fundamental group of the four punctured sphere into . The moduli space of representations modulo conjugacy is the character variety. The Mapping Class Group of the punctured sphere acts on this space by symplectic polynomial automorphisms. This dynamical system can be interpreted as the monodromy of the Painlevé VI equation. Infinite bounded orbits are characterized: they come from -representations. We prove the absence of invariant affine structure (and invariant...
Dans cet article, nous étudions la dynamique des échanges d’intervalles affines dont les pentes sont des puissances d’un même entier et dont les coupures et leurs images sont des rationnels. Nous montrons qu’une telle application a une dynamique très simple : toutes ses orbites sont propres et elle possède au moins une orbite périodique ou un cycle périodique. Comme corollaire de ce résultat, nous montrons que les éléments de distortion dans les groupes de Higman-Thompson sont ceux d’ordre...