The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 241 –
260 of
329
Research partially supported by INTAS grant 97-1644We consider the variety of (p + 1)-tuples of matrices Aj (resp.
Mj ) from given conjugacy classes cj ⊂ gl(n, C) (resp. Cj ⊂ GL(n, C))
such that A1 + . . . + A[p+1] = 0 (resp. M1 . . . M[p+1] = I). This variety is
connected with the weak Deligne-Simpson problem: give necessary and sufficient
conditions on the choice of the conjugacy classes cj ⊂ gl(n, C) (resp.
Cj ⊂ GL(n, C)) so that there exist (p + 1)-tuples with trivial centralizers of
matrices...
Christensen has defined a generalization of the property of being of Haar measure zero to subsets of (abelian) Polish groups which need not be locally compact; a recent paper of Hunt, Sauer, and Yorke defines the same property for Borel subsets of linear spaces, and gives a number of examples and applications. The latter authors use the term “shyness” for this property, and “prevalence” for the complementary property. In the present paper, we construct a number of examples of non-shy Borel sets...
Soit un groupe défini sur les rationnels, simplement connexe, -quasisimple et compact sur . On étudie des suites de sous-ensembles des points rationnels de définis par des conditions sur leur projection dans le groupe des adèles finies de . Nous montrons dans ce cadre un résultat d’équirépartition vers la probabilité de Haar sur le groupe des points réels. On utilise pour cela des propriétés de mélange de l’action du groupe des points adéliques sur l’espace . Pour illustrer ce résultat,...
Existence of proper Gorenstein projective resolutions and Tate cohomology is proved
over rings with a dualizing complex. The proofs are based on Bousfield Localization which is originally a method from algebraic topology.
In this paper we prove that all finite groups have F-injectors with respect to a saturated and extensible Fitting formation F.
Currently displaying 241 –
260 of
329