Constructable Solvable Groups.
Étant donné un automorphisme d’un groupe libre et un représentant topologique train-track de son inverse, on peut construire un arbre réel appelé arbre répulsif de . Le groupe libre agit sur par isométries. La dynamique engendrée par peut être représentée par l’action du groupe libre restreinte à un sous-ensemble compact bien choisi du complété métrique de . Cet article construit ce sous-ensemble sur une classe d’exemples en introduisant des opérations appelées substitutions d’arbre ;...