The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 61 – 80 of 329

Showing per page

Éléments réguliers et représentations de Gelfand-Graev des groupes réductifs non connexes

Karine Sorlin (2004)

Bulletin de la Société Mathématique de France

Soient G un groupe algébrique réductif connexe défini sur 𝔽 q et  F l’endomorphisme de Frobenius correspondant. Soit σ un automorphisme rationnel quasi-central de G . Nous construisons ci-dessous l’équivalent des représentations de Gelfand-Graev du groupe G ˜ F = G F · σ , lorsque σ est unipotent et lorsqu’il est semi-simple. Nous montrons de plus que ces représentations vérifient des propriétés semblables à celles vérifiées par les représentations de Gelfand-Graev dans le cas connexe en particulier par rapport aux...

Embedding 3 -homogeneous latin trades into abelian 2 -groups

Nicholas J. Cavenagh (2004)

Commentationes Mathematicae Universitatis Carolinae

Let T be a partial latin square and L be a latin square with T L . We say that T is a latin trade if there exists a partial latin square T ' with T ' T = such that ( L T ) T ' is a latin square. A k -homogeneous latin trade is one which intersects each row, each column and each entry either 0 or k times. In this paper, we show the existence of 3 -homogeneous latin trades in abelian 2 -groups.

Embedding orders into central simple algebras

Benjamin Linowitz, Thomas R. Shemanske (2012)

Journal de Théorie des Nombres de Bordeaux

The question of embedding fields into central simple algebras B over a number field K was the realm of class field theory. The subject of embedding orders contained in the ring of integers of maximal subfields L of such an algebra into orders in that algebra is more nuanced. The first such result along those lines is an elegant result of Chevalley [6] which says that with B = M n ( K ) the ratio of the number of isomorphism classes of maximal orders in B into which the ring of integers of L can be embedded...

Currently displaying 61 – 80 of 329