Displaying 1101 – 1120 of 1467

Showing per page

On the heights of power digraphs modulo n

Uzma Ahmad, Husnine Syed (2012)

Czechoslovak Mathematical Journal

A power digraph, denoted by G ( n , k ) , is a directed graph with n = { 0 , 1 , , n - 1 } as the set of vertices and E = { ( a , b ) : a k b ( mod n ) } as the edge set. In this paper we extend the work done by Lawrence Somer and Michal Křížek: On a connection of number theory with graph theory, Czech. Math. J. 54 (2004), 465–485, and Lawrence Somer and Michal Křížek: Structure of digraphs associated with quadratic congruences with composite moduli, Discrete Math. 306 (2006), 2174–2185. The heights of the vertices and the components of G ( n , k ) for n 1 and k 2 are determined....

On the Heyde theorem for discrete Abelian groups

G. M. Feldman (2006)

Studia Mathematica

Let X be a countable discrete Abelian group, Aut(X) the set of automorphisms of X, and I(X) the set of idempotent distributions on X. Assume that α₁, α₂, β₁, β₂ ∈ Aut(X) satisfy β α - 1 ± β α - 1 A u t ( X ) . Let ξ₁, ξ₂ be independent random variables with values in X and distributions μ₁, μ₂. We prove that the symmetry of the conditional distribution of L₂ = β₁ξ₁ + β₂ξ₂ given L₁ = α₁ξ₁ + α₂ξ₂ implies that μ₁, μ₂ ∈ I(X) if and only if the group X contains no elements of order two. This theorem can be considered as an analogue...

On the ideal triangulation graph of a punctured surface

Mustafa Korkmaz, Athanase Papadopoulos (2012)

Annales de l’institut Fourier

We study the ideal triangulation graph T ( S ) of an oriented punctured surface S of finite type. We show that if S is not the sphere with at most three punctures or the torus with one puncture, then the natural map from the extended mapping class group of S into the simplicial automorphism group of T ( S ) is an isomorphism. We also show that the graph T ( S ) of such a surface S , equipped with its natural simplicial metric is not Gromov hyperbolic. We also show that if the triangulation graph of two oriented punctured...

On the index of length four minimal zero-sum sequences

Caixia Shen, Li-meng Xia, Yuanlin Li (2014)

Colloquium Mathematicae

Let G be a finite cyclic group. Every sequence S over G can be written in the form S = ( n g ) · . . . · ( n l g ) where g ∈ G and n , . . . , n l i [ 1 , o r d ( g ) ] , and the index ind(S) is defined to be the minimum of ( n + + n l ) / o r d ( g ) over all possible g ∈ G such that ⟨g⟩ = G. A conjecture says that every minimal zero-sum sequence of length 4 over a finite cyclic group G with gcd(|G|,6) = 1 has index 1. This conjecture was confirmed recently for the case when |G| is a product of at most two prime powers. However, the general case is still open. In this paper, we make some...

Currently displaying 1101 – 1120 of 1467