The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 121 – 140 of 237

Showing per page

On the Jacobson radical of graded rings

Andrei V. Kelarev (1992)

Commentationes Mathematicae Universitatis Carolinae

All commutative semigroups S are described such that the Jacobson radical is homogeneous in each ring graded by S .

On the structure of the augmentation quotient group for some nonabelian 2-groups

Jizhu Nan, Huifang Zhao (2012)

Czechoslovak Mathematical Journal

Let G be a finite nonabelian group, G its associated integral group ring, and ( G ) its augmentation ideal. For the semidihedral group and another nonabelian 2-group the problem of their augmentation ideals and quotient groups Q n ( G ) = n ( G ) / n + 1 ( G ) is deal with. An explicit basis for the augmentation ideal is obtained, so that the structure of its quotient groups can be determined.

On the unit group of a semisimple group algebra 𝔽 q S L ( 2 , 5 )

Rajendra K. Sharma, Gaurav Mittal (2022)

Mathematica Bohemica

We give the characterization of the unit group of 𝔽 q S L ( 2 , 5 ) , where 𝔽 q is a finite field with q = p k elements for prime p > 5 , and S L ( 2 , 5 ) denotes the special linear group of 2 × 2 matrices having determinant 1 over the cyclic group 5 .

Currently displaying 121 – 140 of 237