The search session has expired. Please query the service again.
Displaying 81 –
100 of
544
Counting subgroups of finite groups is one of the most important topics in finite group theory. We classify the finite non-nilpotent groups whose set of numbers of subgroups of possible orders has exactly two elements. We show that if is a non-nilpotent group whose set of numbers of subgroups of possible orders has exactly 2 elements, then has a normal Sylow subgroup of prime order and is solvable. Moreover, as an application we give a detailed description of non-nilpotent groups with...
The space which is composed by embedding countably many circles in such a way into the plane that their radii are given by a null-sequence and that they all have a common tangent point is called “The Hawaiian Earrings”. The fundamental group of this space is known to be a subgroup of the inverse limit of the finitely generated free groups, and it is known to be not free. Within the recent move of trying to get hands on the algebraic invariants of non-tame (e.g. non-triangulable) spaces this space...
Let be a surface, let be a subsurface, and let be two positive integers. The inclusion of in gives rise to a homomorphism from the braid group with strings on to the braid group with strings on . We first determine necessary and sufficient conditions that this homomorphism is injective, and we characterize the commensurator, the normalizer and the centralizer of in . Then we calculate the commensurator, the normalizer and the centralizer of in for large surface braid...
Currently displaying 81 –
100 of
544