Subgroups of Hilbert spaces.
We consider the heat kernel corresponding to the left invariant sub-Laplacian with drift term in the first commutator of the Lie algebra, on a nilpotent Lie group. We improve the results obtained by G. Alexopoulos in [1], [2] proving the “exact Gaussian factor” exp(-|g|²/4(1+ε)t) in the large time upper Gaussian estimate for . We also obtain a large time lower Gaussian estimate for .
In this survey article, I shall give an overview on some recent developments concerning the -functional calculus for sub-Laplacians on exponential solvable Lie groups. In particular, I shall give an outline on some recent joint work with W. Hebisch and J. Ludwig on sub-Laplacians which are of holomorphic -type, in the sense that every -spectral multiplier for will be holomorphic in some domain.
Nuclear groups form a class of abelian topological groups which contains LCA groups and nuclear locally convex spaces, and is closed with respect to certain natural operations. In nuclear locally convex spaces, weakly summable families are strongly summable, and strongly summable are absolutely summable. It is shown that these theorems can be generalized in a natural way to nuclear groups.
Hölzl et al. showed that it was possible to build “a generic theory of limits based on filters” in Isabelle/HOL [22], [7]. In this paper we present our formalization of this theory in Mizar [6]. First, we compare the notions of the limit of a family indexed by a directed set, or a sequence, in a metric space [30], a real normed linear space [29] and a linear topological space [14] with the concept of the limit of an image filter [16]. Then, following Bourbaki [9], [10] (TG.III, §5.1 Familles sommables...