Sur la transformation de Radon de la sphère
Il est démontré que le groupe des difféomorphismes du tore qui sont isotopes à l’identité est un groupe qui est égal à son groupe des commutateurs. Il résulte de D.A.B. Epstein que c’est un groupe simple. Un lemme fondamental est utilisé ; il donne la structure locale des orbites de certaines translations du tore ; ce lemme est une application du théorème des fonctions implicites de F. Sergeraert.
On considère un groupe de Lie résoluble, connexe, unimodulaire d’algèbre de Lie . Soit dans le dual de l’espace vectoriel . Sous l’hypothèse que est réductive dans on construit une application de dans l’espace des fonctions sur une partie ouverte et dense de . En utilisant cette application on donne une formule pour la trace de l’opérateur , où est la représentation unitaire du groupe associée à . Cette formule s’applique aux représentations de carré intégrable modulo du...
Nous étudions ici les feuilletages de codimension un induits par les actions non dégénérées de groupes nilpotents.L’existence de feuilles non compactes isolées d’un côté, implique celle d’idéaux remarquables dans l’algèbre de Lie du groupe.Dans la deuxième partie, nous montrons, dans le cas des groupes de Heisenberg des théorèmes de fibration et de cobordisme généralisant ceux obtenus par H. Rosenberg et l’auteur pour (cf. Cahiers IHES, 1974).