Displaying 341 – 360 of 434

Showing per page

An extention of Nomizu’s Theorem –A user’s guide–

Hisashi Kasuya (2016)

Complex Manifolds

For a simply connected solvable Lie group G with a lattice Γ, the author constructed an explicit finite-dimensional differential graded algebra A*Γ which computes the complex valued de Rham cohomology H*(Γ, C) of the solvmanifold Γ. In this note, we give a quick introduction to the construction of such A*Γ including a simple proof of H*(A*Γ) ≅ H*(Γ, C).

An F. and M. Riesz theorem for bounded symmetric domains

R. G. M. Brummelhuis (1987)

Annales de l'institut Fourier

We generalize the classical F. and M. Riesz theorem to metrizable compact groups whose center contains a copy of the circle group. Important examples of such groups are the isotropy groups of the bounded symmetric domains.The proof uses a criterion for absolute continuity involving L p spaces with p < 1 : A measure μ on a compact metrisable group K is absolutely continuous with respect to Haar measure d k on K if for some p < 1 a certain subspace of L p ( K , d k ) which is related to μ has sufficiently many continuous linear...

An inequality for local unitary Theta correspondence

Z. Gong, L. Grenié (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Given a representation π of a local unitary group G and another local unitary group H , either the Theta correspondence provides a representation θ H ( π ) of H or we set θ H ( π ) = 0 . If G is fixed and H varies in a Witt tower, a natural question is: for which H is θ H ( π ) 0 ? For given dimension m there are exactly two isometry classes of unitary spaces that we denote H m ± . For ε { 0 , 1 } let us denote m ε ± ( π ) the minimal m of the same parity of ε such that θ H m ± ( π ) 0 , then we prove that m ε + ( π ) + m ε - ( π ) 2 n + 2 where n is the dimension of π .

An introduction to loopoids

Janusz Grabowski (2016)

Commentationes Mathematicae Universitatis Carolinae

We discuss a concept of loopoid as a non-associative generalization of Brandt groupoid. We introduce and study also an interesting class of more general objects which we call semiloopoids. A differential version of loopoids is intended as a framework for Lagrangian discrete mechanics.

An obstruction to represent abelian Lie algebras by unipotent matrices.

J. C. Benjumea, F. J. Echarte, Núñez, J.,Tenorio, A. F. (2004)

Extracta Mathematicae

The aim of this paper is the study of abelian Lie algebras as subalgebras of the nilpotent Lie algebra gn associated with Lie groups of upper-triangular square matrices whose main diagonal is formed by 1. We also give an obstruction to obtain the abelian Lie algebra of dimension one unit less than the corresponding to gn as a Lie subalgebra of gn. Moreover, we give a procedure to obtain abelian Lie subalgebras of gn up to the dimension which we think it is the maximum.

Currently displaying 341 – 360 of 434