Displaying 1521 – 1540 of 3839

Showing per page

Jordan- and Lie geometries

Wolfgang Bertram (2013)

Archivum Mathematicum

In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers having basic...

Kac-Moody groups, hovels and Littelmann paths

Stéphane Gaussent, Guy Rousseau (2008)

Annales de l’institut Fourier

We give the definition of a kind of building for a symmetrizable Kac-Moody group over a field K endowed with a discrete valuation and with a residue field containing . Due to the lack of some important property of buildings, we call it a hovel. Nevertheless, some good ones remain, for example, the existence of retractions with center a sector-germ. This enables us to generalize many results proved in the semisimple case by S. Gaussent and P. Littelmann. In particular, if K = ( ( t ) ) , the geodesic segments...

Currently displaying 1521 – 1540 of 3839