Multiplicateurs de Mikhlin pour une classe particulière de groupes non-unimodulaires
On montre, pour une classe particulière de groupes non-unimodulaires , où est un groupe de Lie stratifié et où l’action de est définie par les dilatations naturelles de , et pour les sous-laplaciens invariants à gauche correspondants , que toute fonction possédant un support compact dans définit un opérateur borné sur les espaces de Lebesgue associés à la mesure de Haar invariante à droite sur , .