The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a connected real semi-simple Lie group and a closed connected subgroup. Let be a minimal parabolic subgroup of . It is shown that has an open orbit on the flag manifold if and only if it has finitely many orbits on . This confirms a conjecture by T. Matsuki.
We show that a surface group of high genus contained in a classical simple Lie group can be deformed to become Zariski dense, unless the Lie group is (resp. , odd) and the surface group is maximal in some (resp. ). This is a converse, for classical groups, to a rigidity result of S. Bradlow, O. García-Prada and P. Gothen.
In this note, we study formal deformations of derived representations of the principal series representations of . In particular, we recover all the representations of the derived principal series by deforming one of them. Similar results are also obtained for .
For the scalar holomorphic discrete series representations of and their analytic continuations, we study the spectrum of a non-compact real form of the maximal compact subgroup inside . We construct a Cayley transform between the Ol’shanskiĭ semigroup having as Šilov boundary and an open dense subdomain of the Hermitian symmetric space for . This allows calculating the composition series in terms of harmonic analysis on . In particular we show that the Ol’shanskiĭ Hardy space for is different...
Currently displaying 1 –
7 of
7