Displaying 721 – 740 of 880

Showing per page

On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application

Michał Boczek, Marek Kaluszka (2016)

Kybernetika

In this paper, we use a new method to obtain the necessary and sufficient condition guaranteeing the validity of the Minkowski-Hölder type inequality for the generalized upper Sugeno integral in the case of functions belonging to a wider class than the comonotone functions. As a by-product, we show that the Minkowski type inequality for seminormed fuzzy integral presented by Daraby and Ghadimi [11] is not true. Next, we study the Minkowski-Hölder inequality for the lower Sugeno integral and the...

On the Moser-Onofri and Prékopa-Leindler inequalities.

Alessandro Ghigi (2005)

Collectanea Mathematica

Using elementary convexity arguments involving the Legendre transformation and the Prékopa-Leindler inequality, we prove the sharp Moser-Onofri inequality, which says that1/16π ∫|∇φ|2 + 1/4π ∫ φ - log (1/4π ∫ eφ) ≥ 0for any funcion φ ∈ C∞(S2).

On the nonlocal Cauchy problem for semilinear fractional order evolution equations

JinRong Wang, Yong Zhou, Michal Fečkan (2014)

Open Mathematics

In this paper, we develop the approach and techniques of [Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516], [Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465–4475] to deal with nonlocal Cauchy problem for semilinear fractional order evolution equations. We present two new sufficient conditions on existence of mild solutions. The first...

On the notions of absolute continuity for functions of several variables

Stanislav Hencl (2002)

Fundamenta Mathematicae

Absolutely continuous functions of n variables were recently introduced by J. Malý [5]. We introduce a more general definition, suggested by L. Zajíček. This new absolute continuity also implies continuity, weak differentiability with gradient in Lⁿ, differentiability almost everywhere and the area formula. It is shown that our definition does not depend on the shape of balls in the definition.

On the Operational Solution of a System of Fractional Differential Equations

Takači, Dj., Takači, A. (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 44A45, 44A40, 65J10We consider a linear system of differential equations with fractional derivatives, and its corresponding system in the field of Mikusiński operators, written in a matrix form, by using the connection between the fractional and the Mikusiński calculus. The exact and the approximate operational solution of the corresponding matrix equations, with operator entries are determined, and their characters are analyzed. By using the packages Scientific Work place and...

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends to zero. We...

On the points of non-differentiability of convex functions

David Pavlica (2004)

Commentationes Mathematicae Universitatis Carolinae

We characterize sets of non-differentiability points of convex functions on n . This completes (in n ) the result by Zajíček [2] which gives a characterization of the magnitude of these sets.

On the pointwise limits of sequences of Świątkowski functions

Tomasz Natkaniec, Julia Wódka (2018)

Czechoslovak Mathematical Journal

The characterization of the pointwise limits of the sequences of Świątkowski functions is given. Modifications of Świątkowski property with respect to different topologies finer than the Euclidean topology are discussed.

On the power-series expansion of a rational function

D. V. Lee (1992)

Acta Arithmetica

Introduction. The problem of determining the formula for P S ( n ) , the number of partitions of an integer into elements of a finite set S, that is, the number of solutions in non-negative integers, h s , . . . , h s k , of the equation hs₁ s₁ + ... + hsk sk = n, was solved in the nineteenth century (see Sylvester [4] and Glaisher [3] for detailed accounts). The solution is the coefficient of x i n [(1-xs₁)... (1-xsk)]-1, expressions for which they derived. Wright [5] indicated a simpler method by which to find part of the solution...

Currently displaying 721 – 740 of 880