Displaying 201 – 220 of 360

Showing per page

Nonexistence Results of Solutions of Semilinear Differential Inequalities with Temperal Fractional Derivative on the Heinsenberg Group

Haouam, K., Sfaxi, M. (2009)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 26A33, 33C60, 44A15, 35K55Denoting by Dα0|t the time-fractional derivative of order α (α ∈ (0, 1)) in the sense of Caputo, and by ∆H the Laplacian operator on the (2N + 1) - dimensional Heisenberg group H^N, we prove some nonexistence results for solutions to problems of the type Dα0|tu − ∆H(au) >= |u|^p, Dα0|tu − ∆H(au) >= |v|^p, Dδ0|tv − ∆H(bv) >= |u|^q, in H^N × R+ , with a, b ∈ L ∞ (H^N × R+). For α = 1 (and δ = 1 in the case of two inequalities),...

Nonlinear Heat Equation with a Fractional Laplacian in a Disk

Vladimir Varlamov (1999)

Colloquium Mathematicae

For the nonlinear heat equation with a fractional Laplacian u t + ( - Δ ) α / 2 u = u 2 , 1 < α ≤ 2, the first initial-boundary value problem in a disk is considered. Small initial conditions, homogeneous boundary conditions, and periodicity conditions in the angular coordinate are imposed. Existence and uniqueness of a global-in-time solution is proved, and the solution is constructed in the form of a series of eigenfunctions of the Laplace operator in the disk. First-order long-time asymptotics of the solution is obtained....

Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space

Mouffak Benchohra, Soufyane Bouriah, Jamal E. Lazreg, Juan J. Nieto (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper, we establish sufficient conditions for the existence of solutions for nonlinear Hadamard-type implicit fractional differential equations with finite delay. The proof of the main results is based on the measure of noncompactness and the Darbo’s and Mönch’s fixed point theorems. An example is included to show the applicability of our results.

Norm estimates for Bessel-Riesz operators on generalized Morrey spaces

Mochammad Idris, Hendra Gunawan, A. Eridani (2018)

Mathematica Bohemica

We revisit the properties of Bessel-Riesz operators and present a different proof of the boundedness of these operators on generalized Morrey spaces. We also obtain an estimate for the norm of these operators on generalized Morrey spaces in terms of the norm of their kernels on an associated Morrey space. As a consequence of our results, we reprove the boundedness of fractional integral operators on generalized Morrey spaces, especially of exponent 1 , and obtain a new estimate for their norm.

Note on a discretization of a linear fractional differential equation

Jan Čermák, Tomáš Kisela (2010)

Mathematica Bohemica

The paper discusses basics of calculus of backward fractional differences and sums. We state their definitions, basic properties and consider a special two-term linear fractional difference equation. We construct a family of functions to obtain its solution.

Numerical Approximation of a Fractional-In-Space Diffusion Equation (II) – with Nonhomogeneous Boundary Conditions

Ilic, M., Liu, F., Turner, I., Anh, V. (2006)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 26A33 (primary), 35S15In this paper, a space fractional diffusion equation (SFDE) with nonhomogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the...

Numerical Approximation of a Fractional-In-Space Diffusion Equation, I

Ilic, M., Liu, F., Turner, I., Anh, V. (2005)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 26A33 (primary), 35S15 (secondary)This paper provides a new method and corresponding numerical schemes to approximate a fractional-in-space diffusion equation on a bounded domain under boundary conditions of the Dirichlet, Neumann or Robin type. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix...

Numerical Solution of Fractional Diffusion-Wave Equation with two Space Variables by Matrix Method

Garg, Mridula, Manohar, Pratibha (2010)

Fractional Calculus and Applied Analysis

Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.In the present paper we solve space-time fractional diffusion-wave equation with two space variables, using the matrix method. Here, in particular, we give solutions to classical diffusion and wave equations and fractional diffusion and wave equations with different combinations of time and space fractional derivatives. We also plot some graphs for these problems with the help of MATLAB routines.

On a Class of Fractional Type Integral Equations in Variable Exponent Spaces

Rafeiro, Humberto, Samko, Stefan (2007)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30We obtain a criterion of Fredholmness and formula for the Fredholm index of a certain class of one-dimensional integral operators M with a weak singularity in the kernel, from the variable exponent Lebesgue space L^p(·) ([a, b], ?) to the Sobolev type space L^α,p(·) ([a, b], ?) of fractional smoothness. We also give formulas of closed form solutions ϕ ∈ L^p(·) of the 1st kind integral equation M0ϕ = f, known as the generalized...

On a Differential Equation with Left and Right Fractional Derivatives

Atanackovic, Teodor, Stankovic, Bogoljub (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05We treat the fractional order differential equation that contains the left and right Riemann-Liouville fractional derivatives. Such equations arise as the Euler-Lagrange equation in variational principles with fractional derivatives. We reduce the problem to a Fredholm integral equation and construct a solution in the space of continuous functions. Two competing approaches in formulating differential equations of fractional order...

On conditions for the boundedness of the Weyl fractional integral on weighted L p spaces

Liliana De Rosa, Alberto de la Torre (2004)

Commentationes Mathematicae Universitatis Carolinae

In this paper we give a sufficient condition on the pair of weights ( w , v ) for the boundedness of the Weyl fractional integral I α + from L p ( v ) into L p ( w ) . Under some restrictions on w and v , this condition is also necessary. Besides, it allows us to show that for any p : 1 p < there exist non-trivial weights w such that I α + is bounded from L p ( w ) into itself, even in the case α > 1 .

Currently displaying 201 – 220 of 360