The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 6

Displaying 101 – 109 of 109

Showing per page

Covering Property Axiom C P A c u b e and its consequences

Krzysztof Ciesielski, Janusz Pawlikowski (2003)

Fundamenta Mathematicae

We formulate a Covering Property Axiom C P A c u b e , which holds in the iterated perfect set model, and show that it implies easily the following facts. (a) For every S ⊂ ℝ of cardinality continuum there exists a uniformly continuous function g: ℝ → ℝ with g[S] = [0,1]. (b) If S ⊂ ℝ is either perfectly meager or universally null then S has cardinality less than . (c) cof() = ω₁ < , i.e., the cofinality of the measure ideal is ω₁. (d) For every uniformly bounded sequence f n < ω of Borel functions there are sequences:...

Critères de convexité et inégalités intégrales

Serge Dubuc (1977)

Annales de l'institut Fourier

Pour trois fonctions non-négatives intégrables sur R n , f , g et h , telles que ( h ( x + y ) ) - 1 / n ( f ( x ) ) - 1 / n + ( g ( y ) ) - 1 / n , Borelll a établi l’inégalité h ( z ) d z min f ( x ) d x , g ( y ) d y ) . Nous déterminons les conditions précises où l’inégalité sera stricte. La clef de cette analyse est une nouvelle caractérisation des fonctions convexes mesurables.

Curves in Banach spaces which allow a C 1 , BV parametrization or a parametrization with finite convexity

Jakub Duda, Luděk Zajíček (2013)

Czechoslovak Mathematical Journal

We give a complete characterization of those f : [ 0 , 1 ] X (where X is a Banach space) which allow an equivalent C 1 , BV parametrization (i.e., a C 1 parametrization whose derivative has bounded variation) or a parametrization with bounded convexity. Our results are new also for X = n . We present examples which show applicability of our characterizations. For example, we show that the C 1 , BV and C 2 parametrization problems are equivalent for X = but are not equivalent for X = 2 .

Currently displaying 101 – 109 of 109

Previous Page 6