It is well-known that a probability measure on the circle satisfies for every , every (some) , if and only if for every non-zero ( is strictly aperiodic). In this paper we study the a.e. convergence of for every whenever . We prove a necessary and sufficient condition, in terms of the Fourier–Stieltjes coefficients of , for the strong sweeping out property (existence of a Borel set with a.e. and a.e.). The results are extended to general compact Abelian groups with Haar...