Displaying 21 – 40 of 68

Showing per page

Hausdorff dimension and measures on Julia sets of some meromorphic maps

Krzysztof Barański (1995)

Fundamenta Mathematicae

We study the Julia sets for some periodic meromorphic maps, namely the maps of the form f ( z ) = h ( e x p 2 π i T z ) where h is a rational function or, equivalently, the maps ˜ f ( z ) = e x p ( 2 π i h ( z ) ) . When the closure of the forward orbits of all critical and asymptotic values is disjoint from the Julia set, then it is hyperbolic and it is possible to construct the Gibbs states on J(˜f) for -α log |˜˜f|. For ˜α = HD(J(˜f)) this state is equivalent to the ˜α-Hausdorff measure or to the ˜α-packing measure provided ˜α is greater or smaller than 1....

Hausdorff dimension of affine random covering sets in torus

Esa Järvenpää, Maarit Järvenpää, Henna Koivusalo, Bing Li, Ville Suomala (2014)

Annales de l'I.H.P. Probabilités et statistiques

We calculate the almost sure Hausdorff dimension of the random covering set lim sup n ( g n + ξ n ) in d -dimensional torus 𝕋 d , where the sets g n 𝕋 d are parallelepipeds, or more generally, linear images of a set with nonempty interior, and ξ n 𝕋 d are independent and uniformly distributed random points. The dimension formula, derived from the singular values of the linear mappings, holds provided that the sequences of the singular values are decreasing.

Hausdorff dimension of scale-sparse Weierstrass-type functions

Abel Carvalho (2011)

Fundamenta Mathematicae

The aim of this paper is to calculate (deterministically) the Hausdorff dimension of the scale-sparse Weierstrass-type functions W s ( x ) : = j 1 ρ - γ j s g ( ρ γ j x + θ j ) , where ρ > 1, γ > 1 and 0 < s < 1, and g is a periodic Lipschitz function satisfying some additional appropriate conditions.

Hausdorff dimension of the maximal run-length in dyadic expansion

Ruibiao Zou (2011)

Czechoslovak Mathematical Journal

For any x [ 0 , 1 ) , let x = [ ϵ 1 , ϵ 2 , , ] be its dyadic expansion. Call r n ( x ) : = max { j 1 : ϵ i + 1 = = ϵ i + j = 1 , 0 i n - j } the n -th maximal run-length function of x . P. Erdös and A. Rényi showed that lim n r n ( x ) / log 2 n = 1 almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose run-length function assumes on other possible asymptotic behaviors than log 2 n , is quantified by their Hausdorff dimension.

Hausdorff measures and the Morse-Sard theorem.

Carlos Gustavo T. de A. Moreira (2001)

Publicacions Matemàtiques

Let F : U ⊂ Rn → Rm be a differentiable function and p &lt; m an integer. If k ≥ 1 is an integer, α ∈ [0, 1] and F ∈ Ck+(α), if we set Cp(F) = {x ∈ U | rank(Df(x)) ≤ p} then the Hausdorff measure of dimension (p + (n-p)/(k+α)) of F(Cp(F)) is zero.

Hausdorff measures and two point set extensions

Jan Dijkstra, Kenneth Kunen, Jan van Mill (1998)

Fundamenta Mathematicae

We investigate the following question: under which conditions is a σ-compact partial two point set contained in a two point set? We show that no reasonable measure or capacity (when applied to the set itself) can provide a sufficient condition for a compact partial two point set to be extendable to a two point set. On the other hand, we prove that under Martin's Axiom any σ-compact partial two point set such that its square has Hausdorff 1-measure zero is extendable.

Currently displaying 21 – 40 of 68