The search session has expired. Please query the service again.
We show that whenever the -dimensional Minkowski content of a subset exists and is finite and positive, then the “S-content” defined analogously as the Minkowski content, but with volume replaced by surface area, exists as well and equals the Minkowski content. As a corollary, we obtain the almost sure asymptotic behaviour of the surface area of the Wiener sausage in , .
We present an area formula for continuous mappings between metric spaces, under minimal regularity assumptions. In particular, we do not require any notion of differentiability. This is a consequence of a measure-theoretic notion of Jacobian, defined as the density of a suitable "pull-back measure". Finally, we give some applications and examples.
The normalised volume measure on the ℓnp unit ball (1≤p≤2) satisfies the following isoperimetric inequality: the boundary measure of a set of measure a is at least cn1/pãlog1−1/p(1/ã), where ã=min(a, 1−a).
Le cadre de cet article est celui des groupes et des espaces hyperboliques de M. Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de Asymptotic invariants for infinite groups. On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au...
Currently displaying 21 –
32 of
32