The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
126
Let X be a Polish space, and let C₀ and C₁ be disjoint coanalytic subsets of X. The pair (C₀,C₁) is said to be complete if for every pair (D₀,D₁) of disjoint coanalytic subsets of there exists a continuous function such that and . We give several explicit examples of complete pairs of coanalytic sets.
Assume that no cardinal κ < 2ω is quasi-measurable (κ is quasi-measurable if there exists a κ-additive ideal of subsets of κ such that the Boolean algebra P(κ)/ satisfies c.c.c.). We show that for a metrizable separable space X and a proper c.c.c. σ-ideal II of subsets of X that has a Borel base, each point-finite cover ⊆
of X contains uncountably many pairwise disjoint subfamilies , with
-Bernstein unions ∪ (a subset A ⊆ X is
-Bernstein if A and X A meet each Borel
-positive subset...
Nous donnons, pour chaque niveau de complexité Γ, une caractérisation du type "test d'Hurewicz" des boréliens d'un produit de deux espaces polonais ayant toutes leurs coupes dénombrables ne pouvant pas être rendus Γ par changement des deux topologies polonaises.
We show that for every there is a set such that is a monotone measure, the corresponding tangent measures at the origin are non-conical and non-unique and has the -dimensional density between and everywhere in the support.
We prove that if and δ are the Hausdorff metric and the radial metric on the space ⁿ of star bodies in ℝ, with 0 in the kernel and with radial function positive and continuous, then a family ⊂ ⁿ that is meager with respect to need not be meager with respect to δ. Further, we show that both the family of fractal star bodies and its complement are dense in ⁿ with respect to δ.
We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism.
Currently displaying 61 –
80 of
126