Displaying 261 – 280 of 6204

Showing per page

A parabolic Pommerenke-Levin-Yoccoz inequality

Xavier Buff, Adam L. Epstein (2002)

Fundamenta Mathematicae

In a recent preprint [B], Bergweiler relates the number of critical points contained in the immediate basin of a multiple fixed point β of a rational map f: ℙ¹ → ℙ¹, the number N of attracting petals and the residue ι(f,β) of the 1-form dz/(z-f(z)) at β. In this article, we present a different approach to the same problem, which we were developing independently at the same time. We apply our method to answer a question raised by Bergweiler. In particular, we prove that when there are only...

A Phragmén-Lindelöf type quasi-analyticity principle

Grzegorz Łysik (1997)

Studia Mathematica

Quasi-analyticity theorems of Phragmén-Lindelöf type for holomorphic functions of exponential type on a half plane are stated and proved. Spaces of Laplace distributions (ultradistributions) on ℝ are studied and their boundary value representation is given. A generalization of the Painlevé theorem is proved.

A polynomial with 2k critical values at infinity

Janusz Gwoździewicz, Maciej Sękalski (2004)

Annales Polonici Mathematici

We construct a polynomial f:ℂ² → ℂ of degree 4k+2 with no critical points in ℂ² and with 2k critical values at infinity.

A Proof of Simultaneous Linearization with a Polylog Estimate

Tomoki Kawahira (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

We give an alternative proof of simultaneous linearization recently shown by T. Ueda, which connects the Schröder equation and the Abel equation analytically. In fact, we generalize Ueda's original result so that we may apply it to the parabolic fixed points with multiple petals. As an application, we show a continuity result on linearizing coordinates in complex dynamics.

A proof of the Livingston conjecture for the fourth and the fifth coefficient of concave univalent functions

Karl-Joachim Wirths (2004)

Annales Polonici Mathematici

Let D denote the open unit disc and f:D → ℂ̅ be meromorphic and injective in D. We further assume that f has a simple pole at the point p ∈ (0,1) and an expansion f ( z ) = z + n = 2 a ( f ) z , |z| < p. In particular, we consider f that map D onto a domain whose complement with respect to ℂ̅ is convex. Because of the shape of f(D) these functions will be called concave univalent functions with pole p and the family of these functions is denoted by Co(p). It is proved that for p ∈ (0,1) the domain of variability of the coefficient...

Currently displaying 261 – 280 of 6204