An Area Method for Systems of Univalent Functions Whose Ranges do not Overlap.
We study the uniqueness of entire functions which share a polynomial with their linear differential polynomials.
We study the behaviour of the holomorphic sectional curvature (or Gaussian curvature) of the Bergman metric of planar annuli. The results are then utilized to construct a domain for which the curvature is divergent at one of its boundary points and moreover the upper limit of the curvature at that point is maximal possible, equal to 2, whereas the lower limit is -∞.
In these notes we construct explicit examples of degenerations on the noded Schottky space of genus g ≥ 3. The particularity of these degenerations is the invariance under the action of a dihedral group of order 2g. More precisely, we find a two-dimensional complex manifold in the Schottky space such that all groups (including the limit ones in the noded Schottky space) admit a fixed topological action of a dihedral group of order 2g as conformal automorphisms.