The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 721 – 740 of 961

Showing per page

On the mean values of an analytic function.

G. S. Srivastava, Sunita Rani (1992)

Annales Polonici Mathematici

Let f(z), z = r e i θ , be analytic in the finite disc |z| < R. The growth properties of f(z) are studied using the mean values I δ ( r ) and the iterated mean values N δ , k ( r ) of f(z). A convexity result for the above mean values is obtained and their relative growth is studied using the order and type of f(z).

On the meromorphic solutions of a certain type of nonlinear difference-differential equation

Sujoy Majumder, Lata Mahato (2023)

Mathematica Bohemica

The main objective of this paper is to give the specific forms of the meromorphic solutions of the nonlinear difference-differential equation f n ( z ) + P d ( z , f ) = p 1 ( z ) e α 1 ( z ) + p 2 ( z ) e α 2 ( z ) , where P d ( z , f ) is a difference-differential polynomial in f ( z ) of degree d n - 1 with small functions of f ( z ) as its coefficients, p 1 , p 2 are nonzero rational functions and α 1 , α 2 are non-constant polynomials. More precisely, we find out the conditions for ensuring the existence of meromorphic solutions of the above equation.

Currently displaying 721 – 740 of 961