Boundary Values and Mapping Properties of Hp Functions.
Associated with some properties of weighted composition operators on the spaces of bounded harmonic and analytic functions on the open unit disk , we obtain conditions in terms of behavior of weight functions and analytic self-maps on the interior and on the boundary respectively. We give direct proofs of the equivalence of these interior and boundary conditions. Furthermore we give another proof of the estimate for the essential norm of the difference of weighted composition operators.
Given 0 < p,q < ∞ and any sequence z = zₙ in the unit disc , we define an operator from functions on to sequences by . Necessary and sufficient conditions on zₙ are given such that maps the Hardy space boundedly into the sequence space . A corresponding result for Bergman spaces is also stated.
Let Q be the unit square in the plane and h: Q → h(Q) a quasiconformal map. When h is conformal off a certain self-similar set, the modulus of h(Q) is bounded independent of h. We apply this observation to give explicit estimates for the variation of multipliers of repelling fixed points under a "spinning" quasiconformal deformation of a particular cubic polynomial.
We describe compact subsets K of ∂𝔻 and ℝ admitting holomorphic functions f with the domains of existence equal to ℂ∖K and such that the pluripolar hulls of their graphs are infinitely sheeted. The paper is motivated by a recent paper of Poletsky and Wiegerinck.