Clifford algebra-valued orthogonal polynomials in the open unit ball of Euclidean space.
In this note, based on a natural isomorphism between the spaces of differential forms and Clifford algebra-valued multi-vector functions, the Cauchy type integral for self-conjugate differential forms in ℝⁿ is considered.
Cotangent type functions in Rn are used to construct Cauchy kernels and Green kernels on the conformally flat manifolds Rn/Zk where 1 < = k ≤ M. Basic properties of these kernels are discussed including introducing a Cauchy formula, Green's formula, Cauchy transform, Poisson kernel, Szegö kernel and Bergman kernel for certain types of domains. Singular Cauchy integrals are also introduced as are associated Plemelj projection operators. These in turn are used to study Hardy spaces in this...
In this paper we consider operators acting on a subspace of the space of square integrable functions and, in particular, Clifford differential operators with polynomial coefficients. The subspace is defined as the orthogonal sum of spaces of specific Clifford basis functions of . Every Clifford endomorphism of can be decomposed into the so-called Clifford-Hermite-monogenic operators. These Clifford-Hermite-monogenic operators are characterized in terms of commutation relations and they...
We exhibit the first examples of Fréchet spaces which contain a closed infinite dimensional subspace of universal series, but no restricted universal series. We consider classical Fréchet spaces of infinitely differentiable functions which do not admit a continuous norm. Furthermore, this leads us to establish some more general results for sequences of operators acting on Fréchet spaces with or without a continuous norm. Additionally, we give a characterization of the existence of a closed subspace...
Classical theorems about the cluster sets of holomorphic functions on the unit disc are extended to the more general setting of analytic multivalued functions, and examples are given to show that these extensions cannot be improved.