Řešení biharmonického problému pro nekonečný klín. I.
This paper studies analytic aspects of so-called resistance conditions on metric measure spaces with a doubling measure. These conditions are weaker than the usually assumed Poincaré inequality, but however, they are sufficiently strong to imply several useful results in analysis on metric measure spaces. We show that under a perimeter resistance condition, the capacity of order one and the Hausdorff content of codimension one are comparable. Moreover, we have connections to the Sobolev inequality...
This paper is a study of harmonic maps fromRiemannian polyhedra to locally non-positively curved geodesic spaces in the sense of Alexandrov. We prove Liouville-type theorems for subharmonic functions and harmonic maps under two different assumptions on the source space. First we prove the analogue of the Schoen-Yau Theorem on a complete pseudomanifolds with non-negative Ricci curvature. Then we study 2-parabolic admissible Riemannian polyhedra and prove some vanishing results on them.
Let be a metric space, equipped with a Borel measure satisfying suitable compatibility conditions. An amalgam is a space which looks locally like but globally like . We consider the case where the measure of the ball with centre and radius behaves like a polynomial in , and consider the mapping properties between amalgams of kernel operators where the kernel behaves like when and like when . As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems...
Given a compact set , for each positive integer n, let = := sup: p holomorphic polynomial, 1 ≤ deg p ≤ n. These “extremal-like” functions are essentially one-variable in nature and always increase to the “true” several-variable (Siciak) extremal function, := max[0, sup1/(deg p) log|p(z)|: p holomorphic polynomial, ]. Our main result is that if K is regular, then all of the functions are continuous; and their associated Robin functions increase to for all z outside a pluripolar set....