Displaying 101 – 120 of 174

Showing per page

Plurisubharmonic saddles

Siegfried Momm (1996)

Annales Polonici Mathematici

A certain linear growth of the pluricomplex Green function of a bounded convex domain of N at a given boundary point is related to the existence of a certain plurisubharmonic function called a “plurisubharmonic saddle”. In view of classical results on the existence of angular derivatives of conformal mappings, for the case of a single complex variable, this allows us to deduce a criterion for the existence of subharmonic saddles.

Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien

Alano Ancona (1978)

Annales de l'institut Fourier

L’article étudie le compactifié de Martin d’un domaine lipschitzien Ω relativement à un opérateur elliptique à coefficients hödériens L  ; on étend aux fonctions L -harmoniques et aux fonctions L -harmoniques adjointes sur Ω une estimation de L -Carleson pour le cas L = Δ , puis on établit un “principe de Harnack à la frontière” comparant l’allure à la frontière de fonctions L -harmoniques 0 sur Ω . Conséquences : Q Ω , et normalisée en A 0 Ω  ; un théorème de type Fatou-Doob sur l’existence de limites angulaires.On...

Sharp L log α L inequalities for conjugate functions

Matts Essén, Daniel F. Shea, Charles S. Stanton (2002)

Annales de l’institut Fourier

We give a method for constructing functions φ and ψ for which H ( x , y ) = φ ( x ) - ψ ( y ) has a specified subharmonic minorant h ( x , y ) . By a theorem of B. Cole, this procedure establishes integral mean inequalities for conjugate functions. We apply this method to deduce sharp inequalities for conjugates of functions in the class L log α L , for - 1 α < . In particular, the case α = 1 yields an improvement of Pichorides’ form of Zygmund’s classical inequality for the conjugates of functions in L log L . We also apply the method to produce a new proof of the...

Currently displaying 101 – 120 of 174