Hayman admissible functions in several variables.
The mutual singularity problem for measures with restrictions on the spectrum is studied. The -pluriharmonic Riesz product construction on the complex sphere is introduced. Singular pluriharmonic measures supported by sets of maximal Hausdorff dimension are obtained.
We construct a generalization of the Henkin-Ramírez (or Cauchy-Leray) kernels for the -equation. The generalization consists in multiplication by a weight factor and addition of suitable lower order terms, and is found via a representation as an “oscillating integral”. As special cases we consider weights which behave like a power of the distance to the boundary, like exp- with convex, and weights of polynomial decrease in . We also briefly consider kernels with singularities on subvarieties...
Following the work of Daniel Barlet [Pitman Res. Notes Math. Ser. 366 (1997), 19-59] and Ridha Belgrade [J. Algebra 245 (2001), 193-224], the aim of this article is to study the existence of (a,b)-hermitian forms on regular (a,b)-modules. We show that every regular (a,b)-module E with a non-degenerate bilinear form can be written in a unique way as a direct sum of (a,b)-modules that admit either an (a,b)-hermitian or an (a,b)-anti-hermitian form or both; all three cases are possible, and we give...
We define a functional for Hermitian metrics using the curvature of the Chern connection. The Euler–Lagrange equation for this functional is an elliptic equation for Hermitian metrics. Solutions to this equation are related to Kähler–Einstein metrics, and are automatically Kähler–Einstein under certain conditions. Given this, a natural parabolic flow equation arises. We prove short time existence and regularity results for this flow, as well as stability for the flow near Kähler–Einstein metrics...
We study the compact Hermitian spin surfaces with positive conformal scalar curvature on which the first eigenvalue of the Dolbeault operator of the spin structure is the smallest possible. We prove that such a surface is either a ruled surface or a Hopf surface. We give a complete classification of the ruled surfaces with this property. For the Hopf surfaces we obtain a partial classification and some examples
On complete pseudoconvex Reinhardt domains in , we show that there is no nonzero Hankel operator with anti-holomorphic symbol that is Hilbert-Schmidt. In the proof, we explicitly use the pseudoconvexity property of the domain. We also present two examples of unbounded non-pseudoconvex domains in that admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols. In the first example the Bergman space is finite dimensional. However, in the second example the Bergman space is infinite...