Displaying 1981 – 2000 of 5581

Showing per page

Henkin measures, Riesz products and singular sets

Evgueni Doubtsov (1998)

Annales de l'institut Fourier

The mutual singularity problem for measures with restrictions on the spectrum is studied. The d -pluriharmonic Riesz product construction on the complex sphere is introduced. Singular pluriharmonic measures supported by sets of maximal Hausdorff dimension are obtained.

Henkin-Ramirez formulas with weight factors

B. Berndtsson, Mats Andersson (1982)

Annales de l'institut Fourier

We construct a generalization of the Henkin-Ramírez (or Cauchy-Leray) kernels for the -equation. The generalization consists in multiplication by a weight factor and addition of suitable lower order terms, and is found via a representation as an “oscillating integral”. As special cases we consider weights which behave like a power of the distance to the boundary, like exp- ϕ with ϕ convex, and weights of polynomial decrease in C n . We also briefly consider kernels with singularities on subvarieties...

Hermitian (a,b)-modules and Saito's "higher residue pairings"

Piotr P. Karwasz (2013)

Annales Polonici Mathematici

Following the work of Daniel Barlet [Pitman Res. Notes Math. Ser. 366 (1997), 19-59] and Ridha Belgrade [J. Algebra 245 (2001), 193-224], the aim of this article is to study the existence of (a,b)-hermitian forms on regular (a,b)-modules. We show that every regular (a,b)-module E with a non-degenerate bilinear form can be written in a unique way as a direct sum of (a,b)-modules E i that admit either an (a,b)-hermitian or an (a,b)-anti-hermitian form or both; all three cases are possible, and we give...

Hermitian curvature flow

Jeffrey Streets, Gang Tian (2011)

Journal of the European Mathematical Society

We define a functional for Hermitian metrics using the curvature of the Chern connection. The Euler–Lagrange equation for this functional is an elliptic equation for Hermitian metrics. Solutions to this equation are related to Kähler–Einstein metrics, and are automatically Kähler–Einstein under certain conditions. Given this, a natural parabolic flow equation arises. We prove short time existence and regularity results for this flow, as well as stability for the flow near Kähler–Einstein metrics...

Hermitian spin surfaces with small eigenvalues of the Dolbeault operator

Bogdan Alexandrov (2004)

Annales de l'Institut Fourier

We study the compact Hermitian spin surfaces with positive conformal scalar curvature on which the first eigenvalue of the Dolbeault operator of the spin structure is the smallest possible. We prove that such a surface is either a ruled surface or a Hopf surface. We give a complete classification of the ruled surfaces with this property. For the Hopf surfaces we obtain a partial classification and some examples

Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complete pseudoconvex Reinhardt domains

Mehmet Çelik, Yunus E. Zeytuncu (2017)

Czechoslovak Mathematical Journal

On complete pseudoconvex Reinhardt domains in 2 , we show that there is no nonzero Hankel operator with anti-holomorphic symbol that is Hilbert-Schmidt. In the proof, we explicitly use the pseudoconvexity property of the domain. We also present two examples of unbounded non-pseudoconvex domains in 2 that admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols. In the first example the Bergman space is finite dimensional. However, in the second example the Bergman space is infinite...

Currently displaying 1981 – 2000 of 5581