Displaying 201 – 220 of 237

Showing per page

Hua-harmonic functions on symmetric type two Siegel domains

Dariusz Buraczewski, Ewa Damek (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We study a natural system of second order differential operators on a symmetric Siegel domain D that is invariant under the action of biholomorphic transformations. If D is of type two, the space of real valued solutions coincides with pluriharmonic functions. We show the main idea of the proof and give a survey of previous results.

Hulls of subsets of the torus in 2

Herbert Alexander (1998)

Annales de l'institut Fourier

We construct a non-polynomially convex compact subset of the unit torus in 2 with polynomially convex hull containing no analytic structure.

Hyperbolic Cauchy problem and Leray's residue formula

Susumu Tanabé (2000)

Annales Polonici Mathematici

We give an algebraic description of (wave) fronts that appear in strictly hyperbolic Cauchy problems. A concrete form of a defining function of the wave front issued from the initial algebraic variety is obtained with the aid of Gauss-Manin systems satisfied by Leray's residues.

Hyperbolic Fourth-R Quadratic Equation and Holomorphic Fourth-R Polynomials

Apostolova, Lilia N. (2012)

Mathematica Balkanica New Series

MSC 2010: 30C10, 32A30, 30G35The algebra R(1; j; j2; j3), j4 = ¡1 of the fourth-R numbers, or in other words the algebra of the double-complex numbers C(1; j) and the corresponding functions, were studied in the papers of S. Dimiev and al. (see [1], [2], [3], [4]). The hyperbolic fourth-R numbers form other similar to C(1; j) algebra with zero divisors. In this note the square roots of hyperbolic fourth-R numbers and hyperbolic complex numbers are found. The quadratic equation with hyperbolic fourth-R...

Hyperbolic measure of maximal entropy for generic rational maps of k

Gabriel Vigny (2014)

Annales de l’institut Fourier

Let f be a dominant rational map of k such that there exists s < k with λ s ( f ) > λ l ( f ) for all l . Under mild hypotheses, we show that, for A outside a pluripolar set of Aut ( k ) , the map f A admits a hyperbolic measure of maximal entropy log λ s ( f ) with explicit bounds on the Lyapunov exponents. In particular, the result is true for polynomial maps hence for the homogeneous extension of f to k + 1 . This provides many examples where non uniform hyperbolic dynamics is established.One of the key tools is to approximate the graph of a meromorphic...

Hyperbolic spaces in Teichmüller spaces

Christopher J. Leininger, Saul Schleimer (2014)

Journal of the European Mathematical Society

We prove, for any n , that there is a closed connected orientable surface S so that the hyperbolic space n almost-isometrically embeds into the Teichmüller space of S , with quasi-convex image lying in the thick part. As a consequence, n quasi-isometrically embeds in the curve complex of S .

Hyperbolicity and integral points off divisors in subgeneral position in projective algebraic varieties

Do Duc Thai, Nguyen Huu Kien (2015)

Acta Arithmetica

The purpose of this article is twofold. The first is to find the dimension of the set of integral points off divisors in subgeneral position in a projective algebraic variety V k ̅ m , where k is a number field. As consequences, the results of Ru-Wong (1991), Ru (1993), Noguchi-Winkelmann (2003) and Levin (2008) are recovered. The second is to show the complete hyperbolicity of the complement of divisors in subgeneral position in a projective algebraic variety V m .

Hyperbolic-like manifolds, geometrical properties and holomorphic mappings

Grzegorz Boryczka, Luis Tovar (1996)

Banach Center Publications

The authors are dealing with the Dirichlet integral-type biholomorphic-invariant pseudodistance ρ X α ( z 0 , z ) [ ] introduced by Dolbeault and Ławrynowicz (1989) in connection with bordered holomorphic chains of dimension one. Several properties of the related hyperbolic-like manifolds are considered remarking the analogies with and differences from the familiar hyperbolic and Stein manifolds. Likewise several examples are treated in detail.

Currently displaying 201 – 220 of 237