The search session has expired. Please query the service again.
Displaying 21 –
40 of
238
We study representations of lattices of into . We show that if a representation is reductive and if is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic -space to complex hyperbolic -space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into of non-uniform lattices in , and more generally of fundamental groups of orientable...
We identify the holomorphic de Rham complex of the minimal extension of a meromorphic vector bundle with connexion on a compact Riemann surface with the complex relative to a suitable metric on the bundle and a complete metric on the punctured Riemann surface. Applying results of C. Simpson, we show the existence of a harmonic metric on this vector bundle, giving the same complex.
In this paper we prove that the projective dimension of is , where is the ring of polynomials in variables with complex coefficients, and is the module generated by the columns of a matrix which arises as the Fourier transform of the matrix of differential operators associated with the regularity condition for a function of quaternionic variables. As a corollary we show that the sheaf of regular functions has flabby dimension , and we prove a cohomology vanishing theorem for open...
The Hartogs Theorem for holomorphic functions is generalized in two settings: a CR version (Theorem 1.2) and a corresponding theorem based on it for -closed forms at the critical degree, (Theorem 1.1). Part of Frenkel’s lemma in category is also...
Given a locally pseudoconvex bounded domain Ω, in a complex manifold M, the Hartogs type extension theorem is said to hold on Ω if there exists an arbitrarily large compact subset K of Ω such that every holomorphic function on Ω-K is extendible to a holomorphic function on Ω. It will be reported, based on still unpublished papers of the author, that the Hartogs type extension theorem holds in the following two cases: 1) M is Kähler and ∂Ω is C²-smooth and not Levi flat; 2) M is compact Kähler and...
The mutual singularity problem for measures with restrictions on the spectrum is studied. The -pluriharmonic Riesz product construction on the complex sphere is introduced. Singular pluriharmonic measures supported by sets of maximal Hausdorff dimension are obtained.
We construct a generalization of the Henkin-Ramírez (or Cauchy-Leray) kernels for the -equation. The generalization consists in multiplication by a weight factor and addition of suitable lower order terms, and is found via a representation as an “oscillating integral”. As special cases we consider weights which behave like a power of the distance to the boundary, like exp- with convex, and weights of polynomial decrease in . We also briefly consider kernels with singularities on subvarieties...
Following the work of Daniel Barlet [Pitman Res. Notes Math. Ser. 366 (1997), 19-59] and Ridha Belgrade [J. Algebra 245 (2001), 193-224], the aim of this article is to study the existence of (a,b)-hermitian forms on regular (a,b)-modules. We show that every regular (a,b)-module E with a non-degenerate bilinear form can be written in a unique way as a direct sum of (a,b)-modules that admit either an (a,b)-hermitian or an (a,b)-anti-hermitian form or both; all three cases are possible, and we give...
We define a functional for Hermitian metrics using the curvature of the Chern connection. The Euler–Lagrange equation for this functional is an elliptic equation for Hermitian metrics. Solutions to this equation are related to Kähler–Einstein metrics, and are automatically Kähler–Einstein under certain conditions. Given this, a natural parabolic flow equation arises. We prove short time existence and regularity results for this flow, as well as stability for the flow near Kähler–Einstein metrics...
We study the compact Hermitian spin surfaces with positive conformal scalar curvature on
which the first eigenvalue of the Dolbeault operator of the spin structure is the
smallest possible. We prove that such a surface is either a ruled surface or a Hopf
surface. We give a complete classification of the ruled surfaces with this property. For
the Hopf surfaces we obtain a partial classification and some examples
Currently displaying 21 –
40 of
238