Compact Varieties of Surjective Holomorphic Endomorphisms.
Soit un groupe de type fini non élémentaire. On note l’ensemble des structures hyperboliques de dimension sur . peut se réaliser comme fermé dans un espace semi-algébrique qui admet une compactification naturelle par le spectre réel. On note le compactifié via le réel de . L’objet de cet article est de décrire les points ajoutés dans . La compactification obtenue de cette manière permet d’interpréter “les points frontières” comme des représentations de dans où est un corps réel...
On utilise les variétés LV-M pour construire des compactifications équivariantes d’un groupe avec une variété d’Albanèse nulle mais telles que l’espace des formes holomorphes fermées de degré 1 soit non nul et de dimension inférieure à .
We prove a compactness theorem for holomorphic curves in 4-dimensional symplectizations that have embedded projections to the underlying 3-manifold. It strengthens the cylindrical case of the SFT compactness theorem [BEH+C03] by using intersection theory to show that degenerations of such sequences never give rise to multiple covers or nodes, so transversality is easily achieved. This has application to the theory of stable finite energy foliations introduced in [HWZ03], and also suggests a new...