Displaying 1041 – 1060 of 5576

Showing per page

Continuous pluriharmonic boundary values

Per Åhag, Rafał Czyż (2007)

Annales Polonici Mathematici

Let D j be a bounded hyperconvex domain in n j and set D = D × × D s , j=1,...,s, s≥ 3. Also let ₙ be the symmetrized polydisc in ℂⁿ, n ≥ 3. We characterize those real-valued continuous functions defined on the boundary of D or ₙ which can be extended to the inside to a pluriharmonic function. As an application a complete characterization of the compliant functions is obtained.

Continuous Reinhardt domains from a Jordan viewpoint

L. L. Stachó (2008)

Studia Mathematica

As a natural extension of bounded complete Reinhardt domains in N to spaces of continuous functions, continuous Reinhardt domains (CRD) are bounded open connected solid sets in commutative C*-algebras with respect to the natural ordering. We give a complete parametric description for the structure of holomorphic isomorphisms between CRDs and characterize the partial Jordan triple structures which can be associated with some CRDs. On the basis of these results, we test two conjectures concerning...

Continuous transformation groups on spaces

K. Spallek (1991)

Annales Polonici Mathematici

A differentiable group is a group in the category of (reduced and nonreduced) differentiable spaces. Special cases are the rationals ℚ, Lie groups, formal groups over ℝ or ℂ; in general there is some mixture of those types, the general structure, however, is not yet completely determined. The following gives as a corollary a first essential answer. It is shown, more generally,that a locally compact topological transformation group, operating effectively on a differentiable space X (which satisfies...

Contribution du cup-produit de la fibre de Milnor aux pôles de | f | 2 λ

Daniel Barlet (1984)

Annales de l'institut Fourier

Nous montrons comment un cup-produit non trivial entre deux blocs de Jordan pour une même valeur propre de la monodromie agissant sur la cohomologie de la fibre de Milnor d’un germe de fonction holomorphe f provoque des pôles d’ordres élevés pour le prolongement méromorphe de | f | 2 z . Pour la valeur propre 1 ceci donne en particulier le phénomène de “contribution sur-effective”.

Convergence de la métrique de Fubini-Study d'un fibré linéaire positif

Thierry Bouche (1990)

Annales de l'institut Fourier

Soit E , un fibré linéaire positif au-dessus d’une variété complexe compacte. Nous montrons que la fonction de distorsion définie par le rapport entre la métrique initiale et la métrique de Fubini-Study de E k admet un équivalent lorsque k tend vers l’infini. Ceci améliore les encadrements de Kempf et Ji sur les variétés abéliennes, et les étend à toute variété projective. La démonstration repose sur le calcul d’un équivalent pour le noyau de la chaleur, avec contrôle de la convergence par rapport...

Convergence in Capacity

Yang Xing (2008)

Annales de l’institut Fourier

We study the relationship between convergence in capacities of plurisubharmonic functions and the convergence of the corresponding complex Monge-Ampère measures. We find one type of convergence of complex Monge-Ampère measures which is essentially equivalent to convergence in the capacity C n of functions. We also prove that weak convergence of complex Monge-Ampère measures is equivalent to convergence in the capacity C n - 1 of functions in some case. As applications we give certain stability theorems...

Convergence in capacity

Pham Hoang Hiep (2008)

Annales Polonici Mathematici

We prove that if ( Ω ) u j u ( Ω ) in Cₙ-capacity then l i m i n f j ( d d c u j ) n 1 u > - ( d d c u ) n . This result is used to consider the convergence in capacity on bounded hyperconvex domains and compact Kähler manifolds.

Convergence in capacity on smooth hypersurfaces of compact Kähler manifolds

Vu Viet Hung, Hoang Nhat Quy (2012)

Annales Polonici Mathematici

We study restrictions of ω-plurisubharmonic functions to a smooth hypersurface S in a compact Kähler manifold X. The result obtained and the characterization of convergence in capacity due to S. Dinew and P. H. Hiep [to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci.] are used to study convergence in capacity on S.

Convergence in nonisotropic regions of harmonic functions in n

Carme Cascante, Joaquin Ortega (1999)

Studia Mathematica

We study the boundedness in L p ( n ) of the projections onto spaces of functions with spectrum contained in horizontal strips. We obtain some results concerning convergence along nonisotropic regions of harmonic extensions of functions in L p ( n ) with spectrum included in these horizontal strips.

Convergence of Bergman geodesics on CP 1

Jian Song, Steve Zelditch (2007)

Annales de l’institut Fourier

The space of Kähler metrics in a fixed Kähler class on a projective Kähler manifold X is an infinite dimensional symmetric space whose geodesics ω t are solutions of a homogeneous complex Monge-Ampère equation in A × X , where A is an annulus. Phong-Sturm have proven that the Monge-Ampère geodesic of Kähler potentials ϕ ( t , z ) of ω t may be approximated in a weak C 0 sense by geodesics ϕ N ( t , z ) of the finite dimensional symmetric space of Bergman metrics of height N . In this article we prove that ϕ N ( t , z ) ϕ ( t , z ) in C 2 ( [ 0 , 1 ] × X ) in the case of...

Convergence of holomorphic chains

Sławomir Rams (1997)

Annales Polonici Mathematici

We endow the module of analytic p-chains with the structure of a second-countable metrizable topological space.

Converging semigroups of holomorphic maps

Marco Abate (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we study the semigroups Φ : + H o l ( D , D ) of holomorphic maps of a strictly convex domain D 𝐂 n into itself. In particular, we characterize the semigroups converging, uniformly on compact subsets, to a holomorphic map h : D 𝐂 n .

Currently displaying 1041 – 1060 of 5576