Displaying 1461 – 1480 of 5576

Showing per page

Ensembles de zéros à la frontière de fonctions analytiques dans des domaines strictement pseudo-convexes

Anne-Marie Chollet (1976)

Annales de l'institut Fourier

Soit D , un domaine borné, strictement pseudo-convexe de C n , on note A ( D ) , la classe des fonctions analytiques dans D , continues ainsi que toutes leurs dérivées dans D . Le principal résultat de ce travail est une condition suffisante pour qu’un sous-ensemble fermé de la frontière de D soit l’ensemble des zéros d’une fonction F de A ( D ) et aussi l’ensemble des zéros communs à F et à toutes ses dérivées.

Ensembles d'unicité pour les automorphismes et les endomorphismes analytiques d'un domaine borné

Jean-Pierre Vigué (2005)

Annales de l’institut Fourier

Dans cet article, nous étudions les ensembles d’unicité pour le groupe Aut ( D ) des automorphismes analytiques d’un domaine borné D de n (resp. pour l’ensemble H ( D , D ) des fonctions holomorphes de D dans lui-même). Dans les deux cas, nous montrons qu’il existe des ensembles d’unicité contenus dans D n + 1 ; pour Aut ( D ) , nous montrons que ces ensembles d’unicité forment un ensemble dense de D n + 1 , et pour H ( D , D ) , que ce n’est pas le cas en général.

Ensembles pics pour A ( D )

Jacques Chaumat, Anne-Marie Chollet (1979)

Annales de l'institut Fourier

Soit D un domaine borné strictement pseudoconvexe dans C n à frontière régulière D . On montre que tout compact d’une sous-variété N de D dont l’espace tangent T p ( N ) en chaque point p de N est contenu dans le sous-espace complexe maximal de T p ( D ) est un ensemble pic pour A ( D ) , la classe des fonctions analytiques dans D dont toutes les dérivées sont continues dans D .

Envelopes of holomorphy for solutions of the Laplace and Dirac equations

Martin Kolář (1991)

Commentationes Mathematicae Universitatis Carolinae

Analytic continuation and domains of holomorphy for solution to the complex Laplace and Dirac equations in 𝐂 n are studied. First, geometric description of envelopes of holomorphy over domains in 𝐄 n is given. In more general case, solutions can be continued by integral formulas using values on a real n - 1 dimensional cycle in 𝐂 n . Sufficient conditions for this being possible are formulated.

Enveloppes polynomiales de variétés réelles dans C2.

Boris Gourlay (1993)

Publicacions Matemàtiques

We present here three examples concerning polynomial hulls of some manifolds in C2.1. Some real surfaces with equation w = P (z,z') + G(z) where P is a homogeneous polynomial of degree n and G(z) = o(|z|n) at 0 which are locally polynomially convex at 0.2. Some real surfaces MF with equation w = zn+kz'n + F(z,z') such that the hull of Mf ∩ B'(0,1) contains a neighbourhood of 0.3. A contable union of totally real planes (Pj) such that B'(0,1) ∩ (∪j∈N Pj) is polynomially convex.

Enveloppes polynomiales d’unions de plans réels dans n

Pascal J. Thomas (1990)

Annales de l'institut Fourier

En reprenant le travail de Weinstock concernant l’union de deux sous-espaces, nous montrons que n peut être obtenu comme l’union d’un nombre fini de sous-espaces vectoriels totalement réels maximaux, pour tout n supérieur à un. Ceci contraste avec le cas des droites complexes de 2 , dont il faut un ensemble de capacité positive pour que l’enveloppe soit tout l’espace. On étudie aussi le cas des trois plans réels de 2  : si les trois unions deux à deux ne sont pas polynomialement convexes, alors l’enveloppe...

Currently displaying 1461 – 1480 of 5576