Displaying 1541 – 1560 of 5581

Showing per page

Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form.

Philippe Charpentier, Yves Dupain (2006)

Publicacions Matemàtiques

In this paper, we give precise isotropic and non-isotropic estimates for the Bergman and Szegö projections of a bounded pseudoconvex domain whose boundary points are all of finite type and with locally diagonalizable Levi form. Additional local results on estimates of invariant metrics are also given.

Estimates for the Bergman kernel and metric of convex domains in ℂⁿ

Nikolai Nikolov, Peter Pflug (2003)

Annales Polonici Mathematici

Sharp geometrical lower and upper estimates are obtained for the Bergman kernel on the diagonal of a convex domain D ⊂ ℂⁿ which does not contain complex lines. It is also proved that the ratio of the Bergman and Carathéodory metrics of D does not exceed a constant depending only on n.

Estimates of the Kobayashi-Royden metric in almost complex manifolds

Hervé Gaussier, Alexandre Sukhov (2005)

Bulletin de la Société Mathématique de France

We establish a lower estimate for the Kobayashi-Royden infinitesimal pseudometric on an almost complex manifold ( M , J ) admitting a bounded strictly plurisubharmonic function. We apply this result to study the boundary behaviour of the metric on a strictly pseudoconvex domain in M and to give a sufficient condition for the complete hyperbolicity of a domain in ( M , J ) .

Estimating the states of the Kauffman bracket skein module

Doug Bullock (1998)

Banach Center Publications

The states of the title are a set of knot types which suffice to create a generating set for the Kauffman bracket skein module of a manifold. The minimum number of states is a topological invariant, but quite difficult to compute. In this paper we show that a set of states determines a generating set for the ring of S L 2 ( C ) characters of the fundamental group, which in turn provides estimates of the invariant.

Estimation of the Carathéodory distance on pseudoconvex domains of finite type whose boundary has Levi form of corank at most one

Gregor Herbort (2013)

Annales Polonici Mathematici

We study the class of smooth bounded weakly pseudoconvex domains D ⊂ ℂⁿ whose boundary points are of finite type (in the sense of J. Kohn) and whose Levi form has at most one degenerate eigenvalue at each boundary point, and prove effective estimates on the invariant distance of Carathéodory. This completes the author's investigations on invariant differential metrics of Carathéodory, Bergman, and Kobayashi in the corank one situation and on invariant distances on pseudoconvex finite type domains...

Currently displaying 1541 – 1560 of 5581