Displaying 141 – 160 of 237

Showing per page

Holomorphic Morse Inequalities on Manifolds with Boundary

Robert Berman (2005)

Annales de l’institut Fourier

Let X be a compact complex manifold with boundary and let L k be a high power of a hermitian holomorphic line bundle over X . When X has no boundary, Demailly’s holomorphic Morse inequalities give asymptotic bounds on the dimensions of the Dolbeault cohomology groups with values in L k , in terms of the curvature of L . We extend Demailly’s inequalities to the case when X has a boundary by adding a boundary term expressed as a certain average of the curvature of the line bundle and the Levi curvature of the...

Holomorphic non-holonomic differential systems on complex manifolds

S. Dimiev (1991)

Annales Polonici Mathematici

We study coherent subsheaves 𝓓 of the holomorphic tangent sheaf of a complex manifold. A description of the corresponding 𝓓-stable ideals and their closed complex subspaces is sketched. Our study of non-holonomicity is based on the Noetherian property of coherent analytic sheaves. This is inspired by the paper [3] which is related with some problems of mechanics.

Holomorphic Poisson Cohomology

Zhuo Chen, Daniele Grandini, Yat-Sun Poon (2015)

Complex Manifolds

Holomorphic Poisson structures arise naturally in the realm of generalized geometry. A holomorphic Poisson structure induces a deformation of the complex structure in a generalized sense, whose cohomology is obtained by twisting the Dolbeault @-operator by the holomorphic Poisson bivector field. Therefore, the cohomology space naturally appears as the limit of a spectral sequence of a double complex. The first sheet of this spectral sequence is simply the Dolbeault cohomology with coefficients in...

Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces

Vasile Brînzănescu, Ruxandra Moraru (2005)

Annales de l’institut Fourier

In this paper, we consider the problem of determining which topological complex rank-2 vector bundles on non-Kähler elliptic surfaces admit holomorphic structures; in particular, we give necessary and sufficient conditions for the existence of holomorphic rank-2 vector bundles on non-{Kä}hler elliptic surfaces.

Holomorphic retractions and boundary Berezin transforms

Jonathan Arazy, Miroslav Engliš, Wilhelm Kaup (2009)

Annales de l’institut Fourier

In an earlier paper, the first two authors have shown that the convolution of a function f continuous on the closure of a Cartan domain and a K -invariant finite measure μ on that domain is again continuous on the closure, and, moreover, its restriction to any boundary face F depends only on the restriction of f to F and is equal to the convolution, in  F , of the latter restriction with some measure μ F on F uniquely determined by  μ . In this article, we give an explicit formula for μ F in terms of  F ,...

Holomorphic semigroups of holomorphic isometries

Edoardo Vesentini (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A previous paper was devoted to the construction of non-trivial holomorphic families of holomorphic isometries for the Carathéodory metric of a bounded domain in a complex Banach space, fixing a point in the domain. The present article shows that such a family cannot exist if it contains a strongly continuous one parameter semigroup.

Currently displaying 141 – 160 of 237