The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1681 – 1700 of 5581

Showing per page

Families of differential forms on complex spaces

Vincenzo Ancona, Bernard Gaveau (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

On every reduced complex space X we construct a family of complexes of soft sheaves Λ X ; each of them is a resolution of the constant sheaf X and induces the ordinary De Rham complex of differential forms on a dense open analytic subset of X . The construction is functorial (in a suitable sense). Moreover each of the above complexes can fully describe the mixed Hodge structure of Deligne on a compact algebraic variety.

Families of smooth curves on surface singularities and wedges

Gérard Gonzalez-Sprinberg, Monique Lejeune-Jalabert (1997)

Annales Polonici Mathematici

Following the study of the arc structure of singularities, initiated by J. Nash, we give criteria for the existence of smooth curves on a surface singularity (S,O) and of smooth branches of its generic hypersurface section. The main applications are the following: the existence of a natural partition of the set of smooth curves on (S,O) into families, a description of each of them by means of chains of infinitely near points and their associated maximal cycle and the existence of smooth curves on...

Feuilletages holomorphes de codimension un dont la classe canonique est triviale

Frédéric Touzet (2008)

Annales scientifiques de l'École Normale Supérieure

We give a description of Kähler manifolds M equipped with an integrable subbundle of T M of rank n - 1 ( n = dim M ) under the assumption that the line bundle D é t is numerically trivial. This is a sort of foliated version of Bogomolov’s theorem concerning Kähler manifolds with trivial canonical class.

Feuilletages holomorphes singuliers sur les surfaces contenant une coquille sphérique globale

Franz Kohler (1995)

Annales de l'institut Fourier

En résumé, on retiendra que seules les surfaces d’Inoue-Hirzebruch et les surfaces génériques admettent un feuilletage holomorphe. Sur les surfaces d’Inoue-Hirzebruch il existe exactement deux feuilletages et sur les surfaces génériques au plus un. Le lieu singulier de la réunion des courbes rationnelles coïncide avec le lieu singulier du feuilletage. Les courbes rationnelles sont des feuilles en dehors des points singuliers du feuilletage.

Currently displaying 1681 – 1700 of 5581