The search session has expired. Please query the service again.
Displaying 61 –
80 of
218
Let Ω be a bounded pseudoconvex domain in with boundary and let X be a complete intersection submanifold of Ω, defined by holomorphic functions (1 ≤ p ≤ n-1) smooth up to ∂Ω. We give sufficient conditions ensuring that a function f holomorphic in X (resp. in Ω, vanishing on X), and smooth up to the boundary, extends to a function g holomorphic in Ω and belonging to a given strongly non-quasianalytic Carleman class in (resp. satisfies with holomorphic in Ω and -regular in ). The essential...
In this paper, we study a class of first order nonlinear degenerate partial differential equations with singularity at . Using exponential-type Nagumo norm approach, the Gevrey asymptotic analysis is extended to case of holomorphic parameters in a natural way. A sharp condition is then established to deduce the -summability of the formal solutions. Furthermore, analytical solutions in conical domains are found for each type of these nonlinear singular PDEs.
Strong pathologies with respect to growth properties can occur for the extension of holomorphic functions from submanifolds of pseudoconvex domains to all of even in quite simple situations; The spaces are, in general, not at all preserved. Also the image of the Hilbert space under the restriction to can have a very strange structure.
Nous montrons qu’une fonction holomorphe sur un sous-ensemble analytique transverse d’un domaine borné strictement pseudoconvexe de admet une extension dans si et seulement si elle vérifie une condition de type à poids sur ; la démonstration est en partie basée sur la résolution de l’équation avec estimations de type “mesures de Carleson”.
Let f : M → M' be a CR homeomorphism between two minimal, rigid polynomial varieties of Cn without holomorphic curves. We show that f extends biholomorphically in a neighborhood of M if f extends holomorphically in a neighborghood of a point p0 ∈ M or if f is of class C1. In the other hand, in case M and M' are two algebraic hypersurfaces, we obtain the extension without supplementary conditions.
Let D be a bounded strictly pseudoconvex domain with smooth boundary and f = (f1, ..., fp) (fi ∈ Hol(D)) a complete intersection with normal crossing. In this paper we study an extension problem in L∞-norm for holomorphic functions defined on f-1(0) ∩ D and a decomposition formula g = ∑i=1p figi for holomorphic functions g ∈ I(f1, ..., fp)(D) in Lipschitz spaces. We stress that for the two problems the classical theorem cannot be applied because f-1(0) has singularities on the boundary ∂D. This...
Given a multivariate polynomial with integral coefficients verifying an hypothesis of analytic regularity (and satisfying ), we determine the maximal domain of meromorphy of the Euler product and the natural boundary is precisely described when it exists. In this way we extend a well known result for one variable polynomials due to Estermann from 1928. As an application, we calculate the natural boundary of the multivariate Euler products associated to a family of toric varieties.
We study the extension problem for germs of holomorphic isometries up to normalizing constants between bounded domains in Euclidean spaces equipped with Bergman metrics on and on . Our main focus is on boundary extension for pairs of bounded domains such that the Bergman kernel extends meromorphically in to a neighborhood of , and such that the analogous statement holds true for the Bergman kernel on . Assuming that and are complete Kähler manifolds, we prove that the germ...
Currently displaying 61 –
80 of
218