The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
147
Let be a domain in . For , let . If is a holomorphic and square-integrable function in , then the set of all such that is not square-integrable in is of measure zero. We call this set the exceptional set for . In this note we prove that for every ,and every -subset of the circle ,there exists a holomorphic square-integrable function in the unit ball in such that
Soit un morphisme propre fini et surjectif entre deux variétés analytiques complexes. Nous donnons une caractérisation des fonctions (continues) sur qui sont de la forme où est une fonction sur . Pour cela nous introduisons la notion de fonction de type trace sur une variété analytique complexe. Ces fonctions sont analytiques réelles en dehors d’une hypersurface complexe et admettent des singularités très simples aux points de cette hypersurface.
Dans cet article, on construit tout d’abord un noyau de Cauchy explicite dans la boule unité de dont les valeurs au bord sont égales au noyau de Szegö. Puis, à partir de ce noyau, on construit explicitement les noyaux qui fournissent les solutions de l’équation qui sont orthogonales aux fonctions holomorphes dans les espaces , où , étant la mesure de Lebesgue et un réel . Nous donnons ensuite les principales estimations dedans et au bord que vérifient ces solutions. Dans une deuxième...
We study germs of holomorphic mappings between general algebraic hypersurfaces. Our main result is the following. If and are two germs of real algebraic hypersurfaces in , , is not Levi-flat and is a germ at of a holomorphic mapping such that and then the so-called reflection function associated to is always holomorphic algebraic. As a consequence, we obtain that if is given in the so-called normal form, the transversal component of is always algebraic. Another corollary of...
Currently displaying 41 –
60 of
147