Displaying 281 – 300 of 475

Showing per page

The stability study of a plane engine

Rafał Kołodziej, Tomasz Nowicki (2000)

Applicationes Mathematicae

We study the dynamical properties of a plane engine vibrations modelled by a system of ODE.

The steepest descent dynamical system with control. Applications to constrained minimization

Alexandre Cabot (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Let H be a real Hilbert space, Φ 1 : H a convex function of class 𝒞 1 that we wish to minimize under the convex constraint S . A classical approach consists in following the trajectories of the generalized steepest descent system (cf. Brézis [5]) applied to the non-smooth function Φ 1 + δ S . Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function Φ 0 : H whose critical points coincide with S and a control...

The steepest descent dynamical system with control. Applications to constrained minimization

Alexandre Cabot (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let H be a real Hilbert space, Φ 1 : H a convex function of class 𝒞 1 that we wish to minimize under the convex constraint S. A classical approach consists in following the trajectories of the generalized steepest descent system (cf.   Brézis [CITE]) applied to the non-smooth function  Φ 1 + δ S . Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function  Φ 0 : H whose critical points coincide with S and...

The structure of reachable sets for affine control systems induced by generalized Martinet sub-lorentzian metrics

Marek Grochowski (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we investigate analytic affine control systems q ˙ q̇ = X + uY, u ∈  [a,b] , where X,Y is an orthonormal frame for a generalized Martinet sub-Lorentzian structure of order k of Hamiltonian type. We construct normal forms for such systems and, among other things, we study the connection between the presence of the singular trajectory starting at q0 on the boundary of the reachable set from q0 with the minimal number of analytic functions needed for describing the reachable set from q0.

The Sturm-Liouville Friedrichs extension

Siqin Yao, Jiong Sun, Anton Zettl (2015)

Applications of Mathematics

The characterization of the domain of the Friedrichs extension as a restriction of the maximal domain is well known. It depends on principal solutions. Here we establish a characterization as an extension of the minimal domain. Our proof is different and closer in spirit to the Friedrichs construction. It starts with the assumption that the minimal operator is bounded below and does not directly use oscillation theory.

The symplectic Kadomtsev-Petviashvili hierarchy and rational solutions of Painlevé VI

Henrik Aratyn, Johan van de LEUR (2005)

Annales de l’institut Fourier

Equivalence is established between a special class of Painlevé VI equations parametrized by a conformal dimension μ , time dependent Euler top equations, isomonodromic deformations and three-dimensional Frobenius manifolds. The isomonodromic tau function and solutions of the Euler top equations are explicitly constructed in terms of Wronskian solutions of the 2-vector 1-constrained symplectic Kadomtsev-Petviashvili (CKP) hierarchy by means of Grassmannian formulation. These Wronskian solutions give...

Currently displaying 281 – 300 of 475