Two sorts of boundary-value problems of nonlinear third order differential equations
Two sorts of nonlinear third order boundary-value problems are solved and the existence of eigenvalues and eigenfunctions is proved.
Two sorts of nonlinear third order boundary-value problems are solved and the existence of eigenvalues and eigenfunctions is proved.
In this paper, we are interested in the study of bifurcation solutions of nonlinear wave equation of elastic beams located on elastic foundations with small perturbation by using local method of Lyapunov-Schmidt.We showed that the bifurcation equation corresponding to the elastic beams equation is given by the nonlinear system of two equations. Also, we found the parameters equation of the Discriminant set of the specified problem as well as the bifurcation diagram.
We investigate the fractional differential equation u″ + A c D α u = f(t, u, c D μ u, u′) subject to the boundary conditions u′(0) = 0, u(T)+au′(T) = 0. Here α ∈ (1, 2), µ ∈ (0, 1), f is a Carathéodory function and c D is the Caputo fractional derivative. Existence and uniqueness results for the problem are given. The existence results are proved by the nonlinear Leray-Schauder alternative. We discuss the existence of positive and negative solutions to the problem and properties of their derivatives....
Using a suitable version of Mawhin’s continuation principle, we obtain an existence result for the Floquet boundary value problem for second order Carathéodory differential equations by means of strictly localized bounding functions.