Displaying 121 – 140 of 318

Showing per page

Modeling the Cancer Stem Cell Hypothesis

C. Calmelet, A. Prokop, J. Mensah, L. J. McCawley, P. S. Crooke (2010)

Mathematical Modelling of Natural Phenomena

Solid tumors and hematological cancers contain small population of tumor cells that are believed to play a critical role in the development and progression of the disease. These cells, named Cancer Stem Cells (CSCs), have been found in leukemia, myeloma, breast, prostate, pancreas, colon, brain and lung cancers. It is also thought that CSCs drive the metastatic spread of cancer. The CSC compartment features a specific and phenotypically defined cell...

Modeling the role of constant and time varying recycling delay on an ecological food chain

Banibrata Mukhopadhyay, Rakhi Bhattacharyya (2010)

Applications of Mathematics

We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the...

Modelling the spiders ballooning effect on the vineyard ecology

E. Venturino, M. Isaia, F. Bona, E. Issoglio, V. Triolo, G. Badino (2010)

Mathematical Modelling of Natural Phenomena

We consider an ecosystem in which spiders may be transported by the wind from vineyards into the surrounding woods and vice versa. The model takes into account this tranport phenomenon without building space explicitly into the governing equations. The equilibria of the dynamical system are analyzed together with their stability, showing that bifurcations may occur. Then the effects of indiscriminated spraying to keep pests under control is also investigated via suitable simulations.

Modelling Tuberculosis and Hepatitis B Co-infections

S. Bowong, J. Kurths (2010)

Mathematical Modelling of Natural Phenomena

Tuberculosis (TB) is the leading cause of death among individuals infected with the hepatitis B virus (HBV). The study of the joint dynamics of HBV and TB present formidable mathematical challenges due to the fact that the models of transmission are quite distinct. We formulate and analyze a deterministic mathematical model which incorporates of the co-dynamics of hepatitis B and tuberculosis. Two sub-models, namely: HBV-only and TB-only sub-models...

Modelling tumour-immunity interactions with different stimulation functions

Petar Zhivkov, Jacek Waniewski (2003)

International Journal of Applied Mathematics and Computer Science

Tumour immunotherapy is aimed at the stimulation of the otherwise inactive immune system to remove, or at least to restrict, the growth of the original tumour and its metastases. The tumour-immune system interactions involve the stimulation of the immune response by tumour antigens, but also the tumour induced death of lymphocytes. A system of two non-linear ordinary differential equations was used to describe the dynamic process of interaction between the immune system and the tumour. Three different...

Models of interactions between heterotrophic and autotrophic organisms

Urszula Foryś, Zuzanna Szymańska (2009)

Applicationes Mathematicae

We present two simple models describing relations between heterotrophic and autotrophic organisms in the land and water environments. The models are based on the Dawidowicz & Zalasiński models but we assume the boundedness of the oxygen resources. We perform a basic mathematical analysis of the models. The results of the analysis are complemented by numerical illustrations.

Modifying some foliated dynamical systems to guide their trajectories to specified sub-manifolds

Prabhakar G. Vaidya, Swarnali Majumder (2011)

Mathematica Bohemica

We show that dynamical systems in inverse problems are sometimes foliated if the embedding dimension is greater than the dimension of the manifold on which the system resides. Under this condition, we end up reaching different leaves of the foliation if we start from different initial conditions. For some of these cases we have found a method by which we can asymptotically guide the system to a specific leaf even if we start from an initial condition which corresponds to some other leaf. We demonstrate...

Moduli spaces for linear differential equations and the Painlevé equations

Marius van der Put, Masa-Hiko Saito (2009)

Annales de l’institut Fourier

A systematic construction of isomonodromic families of connections of rank two on the Riemann sphere is obtained by considering the analytic Riemann–Hilbert map R H : , where is a moduli space of connections and , the monodromy space, is a moduli space for analytic data (i.e., ordinary monodromy, Stokes matrices and links). The assumption that the fibres of R H (i.e., the isomonodromic families) have dimension one, leads to ten moduli spaces . The induced Painlevé equations are computed explicitly....

Modulus of analytic classification for the generic unfolding of a codimension 1 resonant diffeomorphism or resonant saddle

Christiane Rousseau, Colin Christopher (2007)

Annales de l’institut Fourier

We consider germs of one-parameter generic families of resonant analytic diffeomorphims and we give a complete modulus of analytic classification by means of the unfolding of the Écalle modulus. We describe the parametric resurgence phenomenon. We apply this to give a complete modulus of orbital analytic classification for the unfolding of a generic resonant saddle of a 2-dimensional vector field by means of the unfolding of its holonomy map. Here again the modulus is an unfolding of the Martinet-Ramis...

Currently displaying 121 – 140 of 318