The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
240
The two-parameter Hamiltonian system with the autonomous perturbation is considered. Via the Mel’nikov method, existence and uniqueness of a limit cycle of the system in a certain region of a two-dimensional space of parameters is proved.
This paper deals with the following question: does the asymptotic stability of the positive equilibrium of the Holling-Tanner model imply it is also globally stable? We will show that the answer to this question is negative. The main tool we use is the computation of Poincaré-Lyapunov constants in case a weak focus occurs. In this way we are able to construct an example with two limit cycles.
We prove that in quadratic perturbations of generic Hamiltonian
vector fields with two saddle points and one center there can appear at most two
limit cycles. This bound is exact.
This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02–
359/2008.We consider a nonlinear model of a continuously stirred bioreactor
and study the stability of the equilibrium points with respect to practically
important model parameters. We determine regions in the parameter
space where the steady states undergo transcritical and Hopf bifurcations.
In the latter case, the stability of the emerged limit cycles is also studied.
Numerical simulations in the computer algebra...
We present a series of polynomial planar vector fields without algebraic invariant curves in .
In this paper we consider cubic polynomial systems of the form: x' = y + P(x, y), y' = −x + Q(x, y), where P and Q are polynomials of degree 3 without linear part. If M(x, y) is an integrating factor of the system, we propose its reciprocal V (x, y) = 1 / M(x,y) as a linear function of certain coefficients of the system. We find in this way several new sets of sufficient conditions for a center. The resulting integrating factors are of Darboux type and the first integrals are in the Liouville form.By...
Let be an integral solution of an analytic real vector field defined in a neighbordhood of . Suppose that has a single limit point, . We say that is non oscillating if, for any analytic surface , either is contained in or cuts only finitely many times. In this paper we give a sufficient condition for to be non oscillating. It is established in terms of the existence of “generalized iterated tangents”, i.e. the existence of a single limit point for any transform property for...
In this paper we consider complex differential systems in the plane, which are linearizable in the neighborhood of a nondegenerate centre. We find necessary and sufficient conditions for linearizability for the class of complex quadratic systems and for the class of complex cubic systems symmetric with respect to a centre. The sufficiency of these conditions is shown by exhibiting explicitly a linearizing change of coordinates, either of Darboux type or a generalization of it.
normal forms are given for singularities of vectorfields on , which are not flat, and for vectorfields on with , the 1-jet of in the origin is a pure rotation, and some higher order jet of attracting or expanding.
We give a new proof of Jouanolou’s theorem about non-existence of algebraic solutions to the system . We also present some generalizations of the results of Darboux and Jouanolou about algebraic Pfaff forms with algebraic solutions.
Currently displaying 81 –
100 of
240