Displaying 101 – 120 of 135

Showing per page

Stabilization of wave systems with input delay in the boundary control

Gen Qi Xu, Siu Pang Yung, Leong Kwan Li (2006)

ESAIM: Control, Optimisation and Calculus of Variations

In the present paper, we consider a wave system that is fixed at one end and a boundary control input possessing a partial time delay of weight ( 1 - μ ) is applied over the other end. Using a simple boundary velocity feedback law, we show that the closed loop system generates a C0 group of linear operators. After a spectral analysis, we show that the closed loop system is a Riesz one, that is, there is a sequence of eigenvectors and generalized eigenvectors that forms a Riesz basis for the state Hilbert...

The inverse carrier problem

Grant B. Gustafson, Miroslav Laitoch (2002)

Czechoslovak Mathematical Journal

The problem was motivated by Borůvka’s definitions of the carrier and the associated carrier. The inverse carrier problem is precisely defined and partially solved. Examples are given.

The steepest descent dynamical system with control. Applications to constrained minimization

Alexandre Cabot (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Let H be a real Hilbert space, Φ 1 : H a convex function of class 𝒞 1 that we wish to minimize under the convex constraint S . A classical approach consists in following the trajectories of the generalized steepest descent system (cf. Brézis [5]) applied to the non-smooth function Φ 1 + δ S . Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function Φ 0 : H whose critical points coincide with S and a control...

The steepest descent dynamical system with control. Applications to constrained minimization

Alexandre Cabot (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let H be a real Hilbert space, Φ 1 : H a convex function of class 𝒞 1 that we wish to minimize under the convex constraint S. A classical approach consists in following the trajectories of the generalized steepest descent system (cf.   Brézis [CITE]) applied to the non-smooth function  Φ 1 + δ S . Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function  Φ 0 : H whose critical points coincide with S and...

The structure of reachable sets for affine control systems induced by generalized Martinet sub-lorentzian metrics

Marek Grochowski (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we investigate analytic affine control systems q ˙ q̇ = X + uY, u ∈  [a,b] , where X,Y is an orthonormal frame for a generalized Martinet sub-Lorentzian structure of order k of Hamiltonian type. We construct normal forms for such systems and, among other things, we study the connection between the presence of the singular trajectory starting at q0 on the boundary of the reachable set from q0 with the minimal number of analytic functions needed for describing the reachable set from q0.

Topological properties of the solution set of a class of nonlinear evolutions inclusions

Nikolaos S. Papageorgiou (1997)

Czechoslovak Mathematical Journal

In the paper we study the topological structure of the solution set of a class of nonlinear evolution inclusions. First we show that it is nonempty and compact in certain function spaces and that it depends in an upper semicontinuous way on the initial condition. Then by strengthening the hypothesis on the orientor field F ( t , x ) , we are able to show that the solution set is in fact an R δ -set. Finally some applications to infinite dimensional control systems are also presented.

Turnpike theorems by a value function approach

Alain Rapaport, Pierre Cartigny (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Turnpike theorems deal with the optimality of trajectories reaching a singular solution, in calculus of variations or optimal control problems. For scalar calculus of variations problems in infinite horizon, linear with respect to the derivative, we use the theory of viscosity solutions of Hamilton-Jacobi equations to obtain a unique characterization of the value function. With this approach, we extend for the scalar case the classical result based on Green theorem, when there is uniqueness of the...

Currently displaying 101 – 120 of 135