Asymptotic behavior of ground states of quasilinear elliptic problems with two vanishing parameters, part II
For a fixed bounded open set , a sequence of open sets and a sequence of sets , we study the asymptotic behavior of the solution of a nonlinear elliptic system posed on , satisfying Neumann boundary conditions on and Dirichlet boundary conditions on . We obtain a representation of the limit problem which is stable by homogenization and we prove that this representation depends on and locally.
Let , , and . We study, for , the behavior of positive solutions of the problem in , . In particular, we give a positive answer to an open question formulated in a recent paper of the first author.
We study the semi-classical asymptotic behavior as of scattering amplitudes for Schrödinger operators . The asymptotic formula is obtained for energies fixed in a non-trapping energy range and also is applied to study the low energy behavior of scattering amplitudes for a certain class of slowly decreasing repulsive potentials without spherical symmetry.
We consider the Keller-Segel-Navier-Stokes system which is considered in bounded domain
We study the existence of global in time and uniform decay of weak solutions to the initial-boundary value problem related to the dynamic behavior of evolution equation accounting for rotational inertial forces along with a linear nonlocal frictional damping arises in viscoelastic materials. By constructing appropriate Lyapunov functional, we show the solution converges to the equilibrium state polynomially in the energy space.